942 resultados para ascorbato oxidase
Resumo:
A composição química e bioquímica da manga, varia de acordo com as condições da cultura, variedade e estágio de maturação, geralmente contendo alto conteúdo de ácido ascórbico. Com o objetivo de estabelecer o papel da ascorbato oxidase [E.C.1.10.3.3], sobre os níveis de ácido ascórbico durante o processo de amadurecimento de manga (Mangífera índica L.) var. Haden, foram analisadas amostras da fruta correspondentes aos estágios verde maturo (zero) e armazenadas por 2, 4, 6, 8, 10, 12 e 14 dias a 20 ± 2oC. As amostras foram obtidas das polpas cortadas em pequenos cubos de aproximadamente 8 cm3 de 8 mangas com textura sem diferença significativa entre elas, medidas com auxílio de um penetrômetro Magness-Taylor. Em cada amostra foi determinada atividade de ascorbato oxidase para verificar sua participação em possíveis quedas de ácido ascórbico durante o amadurecimento das frutas. Também foram determinados periodicamente o teor de ácido ascórbico e o perfil sensorial durante o período de amadurecimento. A atividade enzimática foi determinada espectrofotometricamente a 245 nm 30oC, o ácido ascórbico foi analisado de acordo com a metodologia da AOAC modificada e a análise sensorial através de análise descritiva quantitativa. Os dados da análise sensorial foram analisados através de análise de variância (ANOVA), testes de médias de Tukey, análise de componentes principais e análise discriminante por passos. Durante o amadurecimento, a atividade da ascorbato oxidase aumentou e o teor de ácido ascórbico diminuiu, havendo significativa (p£0,05) correlação linear negativa (r=-0,98). Os termos descritores para a manga foram: sabor característico, aroma característico, acidez, adstringência, coloração amarela da polpa, doçura e suculência. O perfil sensorial apresentou significativa melhora com o amadurecimento. Todos os atributos sensoriais aumentaram significativamente (p£0,05) durante o amadurecimento das mangas, exceto acidez e adstringência.
Resumo:
The chemical and biochemical composition of mango, varies according to the cultivation conditions, variety and maturation state, generally containing a high level of ascorbic acid. In order to establish the correlation between the activity of the ascorbate oxidase [E.C.1.10.3.3], and ascorbic acid level in the ripening process of the Haden mango (Mangífera índica L.), sample of the fruits related to hard green stage (zero), 2, 4, 6, 8, 10, 12 and 14 days stored at 20 ± 2oC, were tested. The samples were obtained by cutting small cubes of 8 cm3 from pulps of 8 mangoes with texture without significant difference (p£0.05) at Magness-Taylor pressure tester scale. In each sample the activity of ascorbate oxidase was followed, in order to check its participation in possible substrate losses during the ripening fruits. The ascorbic acid level and sensory profile also was determined periodically during the ripening period. The enzymatic activity was spectrophotometrically determined at 245 nm and 30oC. The ascorbic acid was analyzed according modified AOAC methodology, and sensory analysis by descriptive quantitative analysis. Data were analyzed using correlation analysis, analysis of variance (ANOVA), Tukey's test, principal component analysis and stepwise discriminant analysis. During the ripening, the ascorbate oxidase activity increased (from 0 to 5.0 x 10-1 U/ml) and the ascorbic acid level decreased (from 209.3 mg to 110.0 mg per 100g of pulp), showing a significant (p£0.05) inverse linear correlation (r=-0.98). The descriptors terms for mangoes were: characteristic flavor, characteristic aroma, sourness, astringency, yellow coloration of pulp, sweetness and succulence. The sensory profile presented significant improvement during ripening. All sensory attributes increased significantly (p£0.05) except sourness and astringency, wich decreased during the ripening of mangoes.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Desenvolveu-se um biossensor para ácido L-ascórbico empregando ascorbato oxidase. A enzima foi extraída do mesocarpo de pepino com solução tampão fosfato 0,05 mol L-1, pH 5,8 contendo NaCl 0,5 mol L-1. Após diálise versus solução tampão fosfato 0,05 mol L-1, pH 5,8 a enzima foi imobilizada em rede de nylon através de ligação covalente com glutaraldeído. A membrana foi acoplada em eletrodo de O2 e a reação monitorada pelo consumo de oxigênio a -600 mV em análise em fluxo (solução tampão fosfato 0,05 mol L-1, pH 5,8 como carregador e vazão 0,5 mL min-1). A curva analítica apresentou-se linear entre 1,2x10-4 a 1,0x10-3 mol L-1. O tempo de vida do biossensor foi de 500 análises. Amostras de medicamentos foram analisadas com a metodologia proposta e os resultados comparados com os obtidos com HPLC.
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Foi estudada a expressão da ACC oxidase em maçãs, cv. Jonagold, colhidas no estádio pré-climatérico e armazenadas sob refrigeração em atmosfera normal (0ºC, 95% UR - AN) e controlada (0ºC, 95% UR, 1,5% O2 e 2,5% CO2 - AC), durante 180 dias. Na instalação do experimento, aos 90 e aos 120 dias, foram coletadas amostras para a determinação da firmeza de polpa, da acidez total titulável, dos sólidos solúveis totais, da produção de etileno, da atividade ACC oxidase e para a detecção imunoquímica das isoformas desta enzima. A dosagem da atividade ACC oxidase foi realizada por cromatografia gasosa a partir de extrato protéico solúvel acrescido de 250µM de ACC, 10µL de sulfato ferroso e 30µL de ascorbato de sódio. Para a detecção imunoquímica utilizou-se a técnica "western blot", com anticorpos policlonais anti-ACC oxidase de maçã, após separação das proteínas em eletroforese e isoeletrofocalização. Não foi detectada ACC oxidase em maçãs pré-climatéricas. Porém, após 120 horas em condições ambientais, houve a síntese dessa enzima e um incremento na produção de etileno. A refrigeração não exerceu controle na síntese da ACC oxidase e produção de etileno, resultando em significativas perdas físico-químicas nas frutas armazenadas em AN. Já a utilização de AC permitiu controlar a via de biossíntese do etileno, pela inibição da síntese da ACC oxidase, mantendo o material com boa qualidade para o consumo in natura. A adição de ACC e dos cofatores aumentou a atividade ACC oxidase e alterou o pI da ACC oxidase.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
An amperometric lactate biosensor with lactate oxidase immobilized into a Prussian Blue (PB) modified electrode was fabricated. The advantage of using cetyltrimethylammonium bromide (CTAB) in the electrodeposition step of PB films onto glassy carbon surfaces was confirmed taking into account both the stability and sensitivity of the measurements. The biosensor was used in the development of a FIA amperometric method for the determination of lactate. Under optimal operating conditions (pH = 6.9, E = -0.1 V), the linear response of the method was extended up to 0.28 µmol L-1 lactate with a limit of detection of 0.84 mmol L-1. The repeatability of the method for injections of a 0.28 mmol L-1 lactate solution was 2.2 % (n = 18). The usefulness of the method was demonstrated by determining lactate in beer samples and the results were in good agreement with those obtained by using a reference spectrophotometric enzyme method.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
Background: In spite of its advantageous physiological properties for bioprocess applications, the use of the yeast Kluyveromyces marxianus as a host for heterologous protein production has been very limited, in constrast to its close relative Kluyveromyces lactis. In the present work, the model protein glucose oxidase (GOX) from Aspergillus niger was cloned into K. marxianus CBS 6556 and into K. lactis CBS 2359 using three different expression systems. We aimed at verifying how each expression system would affect protein expression, secretion/localization, post-translational modification, and biochemical properties. Results: The highest GOX expression levels (1552 units of secreted protein per gram dry cell weight) were achieved using an episomal system, in which the INU1 promoter and terminator were used to drive heterologous gene expression, together with the INU1 prepro sequence, which was employed to drive secretion of the enzyme. In all cases, GOX was mainly secreted, remaining either in the periplasmic space or in the culture supernatant. Whereas the use of genetic elements from Saccharomyces cerevisiae to drive heterologous protein expression led to higher expression levels in K. lactis than in K. marxianus, the use of INU1 genetic elements clearly led to the opposite result. The biochemical characterization of GOX confirmed the correct expression of the protein and showed that K. marxianus has a tendency to hyperglycosylate the protein, in a similar way as already observed for other yeasts, although this tendency seems to be smaller than the one of e. g. K. lactis and S. cerevisiae. Hyperglycosylation of GOX does not seem to affect its affinity for the substrate, nor its activity. Conclusions: Taken together, our results indicate that K. marxianus is indeed a good host for the expression of heterologous proteins, not only for its physiological properties, but also because it correctly secretes and folds these proteins.
Resumo:
Introduction. We present some protocols aiming at partially characterizing banana fruit quality through measurement of some key biochemical parameters. The principle, key advantages, starting plant material, time required and expected results are presented. Materials and methods. This part describes the required laboratory materials and the steps necessary for achieving four protocols making it possible to measure sugar, organic acids and free ACC contents, and in vitro ACC oxidase activity. Results. Standard results obtained by using the protocols described are presented in the figures.
Resumo:
Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 A, beta = 96.03 degrees. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V (M) of 2.12 A3 Da-1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.
Resumo:
The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.