931 resultados para artery wall
Resumo:
AIMS: Our aim was to determine whether alterations in biomechanical properties of human diseased compared to normal coronary artery contribute to changes in artery responsiveness to endothelin-1 in atherosclerosis. MAIN METHODS: Concentration-response curves were constructed to endothelin-1 in normal and diseased coronary artery. The passive mechanical properties of arteries were determined using tensile ring tests from which finite element models of passive mechanical properties of both groups were created. Finite element modelling of artery endothelin-1 responses was then performed. KEY FINDINGS: Maximum responses to endothelin-1 were significantly attenuated in diseased (27±3 mN, n=55) compared to normal (38±2 mN, n=68) artery, although this remained over 70% of control. There was no difference in potency (pD2 control=8.03±0.06; pD2 diseased=7.98±0.06). Finite element modelling of tensile ring tests resulted in hyperelastic shear modulus μ=2004±410 Pa and hardening exponent α=22.8±2.2 for normal wall and μ=2464±1075 Pa and α=38.3±6.7 for plaque tissue and distensibility of diseased vessels was decreased. Finite element modelling of active properties of both groups resulted in higher muscle contractile strain (represented by thermal reactivity) of the atherosclerotic artery model than the normal artery model. The models suggest that a change in muscle response to endothelin-1 occurs in atherosclerotic artery to increase its distensibility towards that seen in normal artery. SIGNIFICANCE: Our data suggest that an adaptation occurs in medial smooth muscle of atherosclerotic coronary artery to maintain distensibility of the vessel wall in the presence of endothelin-1. This may contribute to the vasospastic effect of locally increased endothelin-1 production that is reported in this condition.
Resumo:
We report a case of sonographic follow-up showing brightening of the diffuse circumferential thickening (halo) of the carotid artery wall (the so-called "macaroni sign") in a patient with decreasing inflammatory activity of Takayasu arteritis over a 6-month period. Sonographic follow-up in patients with Takayasu arteritis may be a useful complementary tool for evaluation of inflammatory activity. Besides a reduction of halo diameter, an increase in wall echogenicity appears to be a sign of decreasing inflammation.
Resumo:
Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^
Resumo:
Surgery on the head and neck region may be complicated by vascular trauma, caused by direct injury on the vascular wall. Lesions of the arteries are more dangerous than the venous one. The traumatic lesion may cause laceration of the artery wall, spasm, dissection, arteriovenous fistula, occlusion or pseudoaneurysm.We present a case of a child with a giant ICA pseudoaneurysm after tonsillectomy, manifested by pulsing mass and respiratory distress, which was treated by endovascular approach, occluding the lesion and the proximal artery with Histoacryl. We reinforce that the endovascular approach is the better way to treat most of the traumatic vascular lesions.
Resumo:
Surgery on the head and neck region may be complicated by vascular trauma, caused by direct injury on the vascular wall. Lesions of the arteries are more dangerous than the venous one. The traumatic lesion may cause laceration of the artery wall, spasm, dissection, arteriovenous fistula, occlusion or pseudoaneurysm. We present a case of a child with a giant ICA pseudoaneurysm after tonsillectomy, manifested by pulsing mass and respiratory distress, which was treated by endovascular approach, occluding the lesion and the proximal artery with Histoacryl. We reinforce that the endovascular approach is the better way to treat most of the traumatic vascular lesions.
Resumo:
Recently, the existence of a capillary-rich vasculogenic zone has been identified in adult human arteries between the tunica media and adventitia; in this area it has been postulated that Mesenchymal Stem Cells (MSCs) may be present amidst the endothelial progenitors and hematopoietic stem cells. This hypothesis is supported by several studies claiming to have found the in vivo reservoir of MSCs in post-natal vessels and by the presence of ectopic tissues in the pathological artery wall. We demonstrated that the existence of multipotent progenitors is not restricted to microvasculature; vascular wall resident MSCs (VW-MSCs) have been isolated from multidistrict human large and middle size vessels (aortic arch, thoracic aorta and femoral artery) harvested from healthy multiorgan donors. Each VW-MSC population shows characteristics of embryonic-like stem cells and exhibits angiogenic, adipogenic, chondrogenic and leiomyogenic potential but less propensity to osteogenic ifferentiation. Human vascular progenitor cells are also able to engraft, differentiate into mature endothelial cells and support muscle function when injected in a murine model of hind limb ischemia. Conversely, VW-MSCs isolated from calcified femoral arteries display a good response to osteogenic commitment letting us to suppose that VW-MSCs could have an important role in the onset of vascular pathologies such as Mönckeberg sclerosis. Taken together these results show two opposite roles of vascular progenitor cells and underline the importance of establishing their in vivo pathological and regenerative potential to better understand pathological events and promote different therapeutic strategies in cardiovascular research and clinical applications.
Resumo:
One of the most important factors determining the development of atherosclerosis is the amount of LDL particles in the circulation. In general, LDL particles are clinically regarded as “bad cholesterol” since these particles get entrapped within the vascular wall, leading to atherosclerosis. Circulating HDL particles are conversely regarded as “good cholesterol” because of their ability to transport cholesterol from peripheral tissues to the liver for secretion as bile salts. Once inside the artery wall LDL particles are engulfed by macrophages, resulting in macrophage foam cells. If the macrophage foam cells are not able to efflux the cholesterol back into the bloodstream, the excessive cholesterol ultimately leads to cell death, and the deposition of cellular debris within the atherosclerotic lesion. The cells ability to secrete cholesterol is mainly dependent on the ABCA1 transporter (ATP-binding cassette transporter A1) which transfers cellular cholesterol to extracellular apoA-I (apolipoprotein A-I) particles, leading to the generation of nascent HDL particles. The process of atherosclerotic plaque development is therefore to a large extent a cellular one, in which the capacity of the macrophages in handling the excessive cholesterol load determines the progression of lesion development. In this work we have studied the cellular mechanisms that regulate the trafficking of LDL-derived cholesterol from endosomal compartments to other parts of the cell. As a basis for the study we have utilized cells from patients with Niemann-Pick type C disease, a genetic disorder resulting from mutations in the NPC1 and NPC2 genes. In these cells, cholesterol is entrapped within the endosomal compartment, and is not available for efflux. By identifying proteins that bypass the cholesterol trafficking defect, we were able to identify the small GTPase Rab8 as an important protein involved in ABCA1 dependent cholesterol efflux. In the study, we show that Rab8 regulates cholesterol efflux in human macrophages by facilitating intracellular cholesterol transport, as well as by regulating the plasma membrane availability of ABCA1. Collectively, these results give new insight in to atherosclerotic lesion development and intracellular cholesterol processing.
Resumo:
L’hémoglobine est une protéine contenue dans les globules rouges dont la principale fonction est le transport de l’oxygène. Chaque molécule d’hémoglobine est un tétramère constitué de deux paires de globines identiques de type α et β. La β-thalassémie est une maladie génétique hématopoïétique provenant de mutations du gène encodant l'hémoglobine. Ce désordre se caractérise par une diminution ou une absence totale de la synthèse de la chaîne β-globine résultant principalement en une anémie hémolytique sévère ainsi que des complications multisystémiques, telles que la splénomégalie, des déformations osseuses et une dysfonction hépatique et rénale. Actuellement, les transfusions sanguines chroniques représentent le traitement standard des patients β-thalassémiques. Cette thérapie nécessite l’administration conjointe d’un traitement chélateur de fer puisqu’elle entraîne une accumulation pathologique du fer, considéré à ce jour comme la source principale des complications cardiovasculaires de la β-thalassémie. Néanmoins, malgré le traitement efficace de la surcharge de fer transfusionnelle, l’insuffisance cardiaque demeure encore la principale cause de mortalité chez les patients atteints de β-thalassémie. Cette observation indique possiblement la présence d’un mécanisme complémentaire dans le développement de la physiopathologie cardiaque β-thalassémique. L’objectif du présent projet consistait donc à étudier les altérations cardiovasculaires de la β-thalassémie indépendamment de la surcharge de fer transfusionnelle. En utilisant un modèle murin non-transfusé de la β-thalassémie majeure, nous avons d’abord évalué in vivo, par méthode d’imagerie novatrice échographique à haute fréquence, les propriétés hémodynamiques vasculaires. Nos résultats d’index de Pourcelot ainsi que de résistance vasculaire périphérique totale ont démontré une perturbation de l’écoulement microcirculatoire chez les souris β-thalassémiques non-transfusées. Subséquemment, nous avons étudié la fonction endothéliale de régulation du tonus vasculaire de vaisseaux mésentériques isolés. Nos résultats ont révélé un dysfonctionnement de la réponse vasodilatatrice dépendante de l’endothélium chez les souris β-thalassémiques malgré une augmentation de l’expression de l’enzyme de synthèse du monoxyde d’azote ainsi qu’un remodelage de la carotide commune caractérisé par un épaississement de la paroi vasculaire. Finalement, notre étude échocardiographique de la fonction et la morphologie cardiaque a montré, chez les souris β-thalassémiques, le développement d’une hypertrophie et une dysfonction ventriculaire gauche en l’absence de transfusions sanguines chroniques ou de dépôts directs de fer dans le myocarde. L’ensemble des résultats présentés dans le cadre de cette thèse indique la présence d’une pathologie cardiovasculaire chez les souris β-thalassémiques non-transfusés. Nos travaux permettent de proposer un mécanisme de la pathophysiologie cardiovasculaire β-thalassémique, indépendant de la charge de fer transfusionnelle, impliquant les effets compensatoires d’une anémie chronique combinés à une vasculopathie complexe initiée par les érythrocytes endommagés et l’hémolyse intravasculaire.
Resumo:
Mechanisms of testicular thermoregulation, the relationship of scrotal, testicular vascular cone (TVC), and testicular morphology with thermoregulatory capability, and their effects on semen quality and sperm production were studied in 20 Bos indicus, 28 crossbred, and 26 Bos taurus bulls. The ratio of testicular artery length and volume to testicular volume were larger (P < 0.05) in B. indicus and crossbred bulls than in B. taurus bulls (1.03 and 0.94 cm/cm(2). versus 0.48 cm/cm(3); 0.034 and 0.047 ml/cm(3) versus 0.017 ml/cm(3), respectively). Testicular artery wall thickness (average 192.5, 229.0, and 290.0 mum, respectively) and arterial-venous blood distance in the TVC (average 330.5, 373.7, and 609.4 pm, respectively) were smallest in B. indicus, intermediary in crossbred, and greatest in B. taurus bulls (P < 0.05); the proximity between arterial and venous blood was consistent with the estimated decrease in arterial blood temperature after passage through the TVC (5.9, 5.0, and 2.9 degreesC, in B. indicus, crossbred, and B. taurus bulls, respectively). In crossbred and B. taurus bulls, there was a positive top-to-bottom scrotal temperature gradient and a negative testicular subtunic temperature gradient. However, in B. indicus bulls, both scrotal and testicular subtunic temperatures gradients were positive. Differences in the vascular arrangement, characteristics of the artery (e.g. wall thickness) or thickness of the tunica albuginea may have affected the testicular arterial blood and subtunic temperatures in B. indicus bulls. Better testicular thermoregulatory capability was associated with increased scrotal shape (pendulosity), testicular artery length and volume, and top-to-bottom gradient of the distance between the artery wall and the veins in the TVC. Increased semen quality was associated with increased testicular volume and scrotal subcutaneous (SQT) temperature gradient, and with decreased scrotal surface and testicular temperatures. Increased sperm production was associated with increased testicular artery volume, testicular volume, and SQT temperature gradient, and with decreased testicular artery wall thickness, scrotal circumference (SC), and scrotal surface, testicular subtunic, and epididymal temperatures. In conclusion, morphology of the TVC may contribute to the greater resistance of B. indicus bulls to high ambient temperatures by conferring a better testicular blood supply and by facilitating heat transfer between the testicular artery and veins. Testicular thermoregulation was associated with opposing scrotal and testicular subtunic temperatures gradients only in crossbred and B. taurus bulls. Scrotal, TVC, and testicular morphology influence testicular thermoregulatory capability and were associated with differences in semen quality and sperm production. (C) 2003 Elsevier B.V. All rights reserved.
Características estruturais da parede das artérias renal e femoral de coelho (Oryctolagus cuniculus)
Resumo:
In the renal and femoral arteries of rabbit was verified that both vessels had walls structured by myostromal components, despite of their different distributive of blood, being the renal artery a visceral blood vessel and the femoral artery a parietal vessel. This wall pattern in these vessels concerned to presence of connective stromal elements (collagen and elastic fibres and lamellae) and smooth muscle cells coexisting with some equilibrium in the wall structure of the renal and femoral arteries, mainly in the medial layer architecture. An intimal folding pattern was verified around the vascular lumen, possibly related to capacitance of the both arteries regarding to variability of pressure levels in cardiac cycle. Furthermore, myostromal relations of connective elements and smooth muscle cells verified in the medial layer and the network formed by connective elements in the adventitial layer of these arteries contributed to maintenance of wall viscoelasticity properties of the vessels.
Resumo:
The development of atherosclerosis and the inflammatory response were investigated in LDLr-KO mice on three high-fat diets (40% energy as fat) for 16 weeks: trans (TRANS), saturated (SAFA) or omega-6 polyunsaturated (PUFA) fats. The following parameters were measured: plasma lipids, aortic root total cholesterol (TC), lesion area (Oil Red-O), ABCA1 content and macrophage infiltration (immunohistochemistry), collagen content (Picrosirius-red) and co-localization of ABCA1 and macrophage (confocal microscopy) besides the plasma inflammatory markers (IL-6, TNF-alpha) and the macrophage inflammatory response to lipopolysaccharide from Escherichia coli (LPS). As expected, plasma TC and TG concentrations were lower on the PUFA diet than on TRANS or SAFA diets. Aortic intima macrophage infiltration, ABCA1 content, and lesion area on PUFA group were lower compared to TRANS and SAFA groups. Macrophages and ABCA1 markers did not co-localize in the atherosclerotic plaque, suggesting that different cell types were responsible for the ABCA1 expression in plaques. Compared to PUFA, TRANS and SAFA presented higher collagen content and necrotic cores in atherosclerotic plaques. In the artery wall, TC was lower on PUFA compared to TRANS group; free cholesterol was lower on PUFA compared to TRANS and SAFA; cholesteryl ester concentration did not vary amongst the groups. Plasma TNF-alpha concentration on PUFA and TRANS-fed mice was higher compared to SAFA. No difference was observed in IL-6 concentration amongst groups. Regarding the macrophage inflammatory response to LPS, TRANS and PUFA presented higher culture medium concentrations of IL-6 and TNF-alpha as compared to SAFA. The PUFA group showed the lowest amount of the anti-inflammatory marker IL-10 compared to TRANS and SAFA groups. In conclusion, PUFA intake prevented atherogenesis, even in a pro-inflammatory condition. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
[EN] The aortic dissection is a disease that can cause a deadly situation, even with a correct treatment. It consists in a rupture of a layer of the aortic artery wall, causing a blood flow inside this rupture, called dissection. The aim of this paper is to contribute to its diagnosis, detecting the dissection edges inside the aorta. A subpixel accuracy edge detector based on the hypothesis of partial volume effect is used, where the intensity of an edge pixel is the sum of the contribution of each color weighted by its relative area inside the pixel. The method uses a floating window centred on the edge pixel and computes the edge features. The accuracy of our method is evaluated on synthetic images of different hickness and noise levels, obtaining an edge detection with a maximal mean error lower than 16 percent of a pixel.
Resumo:
Purpose: In this work, we present the analysis, design and optimization of one experimental device recently developed in the UK, called the 'GP' Thrombus Aspiration Device (GPTAD). This device has been designed to remove blood clots without the need to make contact with the clot itself thereby potentially reducing the risk of problems such as downstream embolisation. Method: To obtain the minimum pressure necessary to extract the clot and to optimize the device, we have simulated the performance of the GPTAD analysing the resistances, compliances and inertances effects. We model a range of diameters for the GPTAD considering different forces of adhesion of the blood clot to the artery wall, and different lengths of blood clot. In each case we determine the optimum pressure required to extract the blood clot from the artery using the GPTAD, which is attached at its proximal end to a suction pump. Result: We then compare the results of our mathematical modelling to measurements made in laboratory using plastic tube models of arteries of comparable diameter. We use abattoir porcine blood clots that are extracted using the GPTAD. The suction pressures required for such clot extraction in the plastic tube models compare favourably with those predicted by the mathematical modelling. Discussion & Conclusion: We conclude therefore that the mathematical modelling is a useful technique in predicting the performance of the GPTAD and may potentially be used in optimising the design of the device.
Resumo:
To propose an automated patient-specific algorithm for the creation of accurate and smooth meshes of the aortic anatomy, to be used for evaluating rupture risk factors of abdominal aortic aneurysms (AAA). Finite element (FE) analyses and simulations require meshes to be smooth and anatomically accurate, capturing both the artery wall and the intraluminal thrombus (ILT). The two main difficulties are the modeling of the arterial bifurcations, and of the ILT, which has an arbitrary shape that is conforming to the aortic wall.