967 resultados para aromatic amino acid
Resumo:
Aromatic amino acid hydroxylase (AAAH) genes and insulin-like genes form part of an extensive paralogy region shared by human chromosomes 11 and 12, thought to have arisen by tetraploidy in early vertebrate evolution. Cloning of a complementary DNA (cDNA) for an amphioxus (Branchiostoma floridae) hydroxylase gene (AmphiPAH) allowed us to investigate the ancestry of the human chromosome 11/12 paralogy region. Molecular phylogenetic evidence reveals that AmphiPAH is orthologous to vertebrate phenylalanine (PAH) genes; the implication is that all three vertebrate AAAH genes arose early in metazoan evolution, predating vertebrates. In contrast, our phylogenetic analysis of amphioxus and vertebrate insulin-related gene sequences is consistent with duplication of these genes during early chordate ancestry. The conclusion is that two tightly linked gene families on human chromosomes 11 and 12 were not duplicated coincidentally. We rationalize this paradox by invoking gene loss in the AAAH gene family and conclude that paralogous genes shared by paralogous chromosomes need not have identical evolutionary histories.
Resumo:
Although trypanosomatids are known to rapidly transaminate exogenous aromatic amino acids in vitro and in vivo, the physiological significance of this reaction is not understood. In postmitochondrial supernatants prepared from Trypanosoma brucei brucei and Crithidia fasciculata, we have found that aromatic amino acids were the preferred amino donors for the transamination of alpha-ketomethiobutyrate to methionine. Intact C. fasciculata grown in the presence of [15N]tyrosine were found to contain detectable [15N]methionine, demonstrating that this reaction occurs in situ in viable cells. This process is the final step in the recycling of methionine from methylthioadenosine, a product of decarboxylated S-adenosylmethionine from the polyamine synthetic pathway. Mammalian liver, in contrast, preferentially used glutamine for this reaction and utilized a narrower range of amino donors than seen with the trypanosomatids. Studies with methylthioadenosine showed that this compound was readily converted to methionine, demonstrating a fully functional methionine-recycling pathway in trypanosomatids.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper concerns the use of photoacoustic spectroscopy (PAS) to study the presence of aromatic amino acid in proteins. We examined the aromatic amino acids in six proteins with well-known structures using absorption spectra of near ultraviolet PAS over the wavelength range 240-320 nm. The fundamental understanding of the physical and chemical properties that govern the absorption of light and a subsequent release of heat to generate a transient pressure wave was used to test the concept of monitoring aromatic amino acids with this method. Second derivative spectroscopy in the ultraviolet region of proteins was also used to study the regions surrounding the aromatics and the percentage area in each band was related in order to determine the contribution in function of the respective molar extinction coefficients for each residue. Further investigation was conducted into the interaction between sodium dodecyl sulphate (SDS) and bothropstoxin-I (BthTx-I), with the purpose of identifying the aromatics that participate in the interaction. The clear changes in the second derivative and curve-fitting procedures suggest that initial SDS binding to the tryptophan located in the dimer interface and above 10 SDS an increased intensity between 260 and 320 nm, demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interactions. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scattering is significant.
Resumo:
Nitric oxide synthases (NOSs) require tetrahydrobiopterin (BH4) for dimerization and NO production. Mutation analysis of mouse inducible NOS (iNOS; NOS2) identified Gly-450 and Ala-453 as critical for NO production, dimer formation, and BH4 binding. Substitutions at five neighboring positions were tolerated, and normal binding of heme, calmodulin, and NADPH militated against major distortions affecting the NH2-terminal portion, midzone, or COOH terminus of the inactive mutants. Direct involvement of residues 450 and 453 in the binding of BH4 is supported by the striking homology of residues 448-480 to a region extensively shared by the three BH4-utilizing aromatic amino acid hydroxylases and is consistent with the conservation of these residues among all 10 reported NOS sequences, including mammalian NOSs 1, 2, and 3, as well as avian and insect NOSs. Altered binding of BH4 and/or L-arginine may explain how the addition of a single methyl group to the side chain of residue 450 or the addition of three methylenes to residue 453 can each abolish an enzymatic activity that reflects the concerted function of 1143 other residues.
Resumo:
The effect of hyperbranched macromolecular architectures (dendrimers) upon chirality has received significant attention in recent years in the light of the proposal of amplification of chirality. In particular, several studies have been carried out on the chiroptical properties of dendrimers that contain a chiral core and achiral branches in order to determine if the chirality of the central core can be transmitted to the distal. region of the macromolecule. In addition to interest of a pure academic nature, the presence of such chiral conformational order would be extremely useful in the development of asymmetric catalysts. In this paper, a novel class of chiral dendrimers is described - these perfect hyperbranched macromolecules have been prepared by a convergent route by the coupling of a chiral central core based upon tris(2-aminoethyl)amine and poly(aromatic amide ester) dendritic branches. The chiral properties of these dendrimers have been investigated by detailed optical rotation studies and circular dichroism analysis; the results of these studies are described herein. (C) Wiley-VCH Verlag GmbH Co.
Resumo:
Different autoantigens are thought to be involved in the pathogenesis of insulin-dependent diabetes mellitus, and they may account for the variation in the clinical presentation of the disease. Sera from patients with autoimmune polyendocrine syndrome type I contain autoantibodies against the beta-cell proteins glutamate decarboxylase and an unrelated 51-kDa antigen. By screening of an expression library derived from rat insulinoma cells, we have identified the 51-kDa protein as aromatic-L-amino-acid decarboxylase (EC 4.1.1.28). In addition to the previously published full-length cDNA, forms coding for a truncated and an alternatively spliced version were identified. Aromatic L-amino acid decarboxylase catalyzes the decarboxylation of L-5-hydroxytryptophan to serotonin and that of L-3,4-dihydroxyphenylalanine to dopamine. Interestingly, pyridoxal phosphate is the cofactor of both aromatic L-amino acid decarboxylase and glutamate decarboxylase. The biological significance of the neurotransmitters produced by the two enzymes in the beta cells remains largely unknown.
Resumo:
Most studies on the antioxidants, lipoic acid (LA) and ascorbic acid (AA), focused on species that, unlike teleost fish, are not scurvy-prone, and are able to synthesize AA. The antioxidant properties of LA may make it useful in aquaculture nutrition, but several effects must first be investigated, and we address here plasma free amino acids (FAA). In mammals, LA and AA in high doses were claimed to alter plasma FAA profile; to our knowledge, however, no data are available in fish. We therefore studied the effects of dietary LA and AA on plasma FAA in the South American teleost fish pacu, which is being used increasingly in aquaculture. LA treatment decreased concentrations of 18 of 23 individual FAA; specifically, dispensable and total FAA were significantly affected. Ornithine was elevated (+26%) in LA-treated fish and significantly decreased ratios of plasma [Arg]/[Orn] and other individual [FAA]/[Orn] were observed. LA and AA both affected sulfur FAA concentrations. Plasma cystine levels were significantly increased in the LA-supplemented groups. AA had little effect on most amino acids, and no interaction with LA was detected. AA supplementation did, however, significantly lower taurine (-42%) and cystathionine (-31%) levels in plasma. No effect on the branched chain:aromatic amino acid ratios was observed. The data indicate that at the dietary level studied, LA and AA independently affect selected plasma FAA in pacu, and suggest that any use of LA in particular as a dietary supplement should take into account an altered plasma FAA profile.
Resumo:
l-Amino acid oxidases (LAAOs) are flavoenzymes that catalytically deaminate l-amino acids to corresponding α-keto acids with the concomitant production of ammonia (NH 3) and hydrogen peroxide (H 2O 2). Particularly, snake venom LAAOs have been attracted much attention due to their diverse clinical and biological effects, interfering on human coagulation factors and being cytotoxic against some pathogenic bacteria and Leishmania ssp. In this work, a new LAAO from Bothrops jararacussu venom (BjsuLAAO) was purified, functionally characterized and its structure determined by X-ray crystallography at 3.1å resolution. BjsuLAAO showed high catalytic specificity for aromatic and aliphatic large side-chain amino acids. Comparative structural analysis with prokaryotic LAAOs, which exhibit low specificity, indicates the importance of the active-site volume in modulating enzyme selectivity. Surprisingly, the flavin adenine dinucleotide (FAD) cofactor was found in a different orientation canonically described for both prokaryotic and eukaryotic LAAOs. In this new conformational state, the adenosyl group is flipped towards the 62-71 loop, being stabilized by several hydrogen-bond interactions, which is equally stable to the classical binding mode. © 2012 Elsevier Inc.
Resumo:
The proposition posed is that the value of amino acid conjugation to the organism is not, as in the traditional view, to use amino acids for the detoxication of aromatic acids. Rather, the converse is more likely, to use aromatic acids that originate from the diet and gut microbiota to assist in the regulation of body stores of amino acids, such as glycine, glutamate, and, in certain invertebrates, arginine, that are key neurotransmitters in the central nervous system (CNS). As such, the amino acid conjugations are not so much detoxication reactions, rather they are homeostatic and neuroregulatory processes. Experimental data have been culled in support of this hypothesis from a broad range of scientific and clinical literature. Such data include the low detoxication value of amino acid conjugations and the Janus nature of certain amino acids that are both neurotransmitters and apparent conjugating agents. Amino acid scavenging mechanisms in blood deplete brain amino acids. Amino acids glutamate and glycine when trafficked from brain are metabolized to conjugates of aromatic acids in hepatic mitochondria and then irreversibly excreted into urine. This process is used clinically to deplete excess nitrogen in cases of urea cycle enzymopathies through excretion of glycine or glutamine as their aromatic acid conjugates. Untoward effects of high-dose phenylacetic acid surround CNS toxicity. There appears to be a relationship between extent of glycine scavenging by benzoic acid and psychomotor function. Glycine and glutamine scavenging by conjugation with aromatic acids may have important psychosomatic consequences that link diet to health, wellbeing, and disease.
Resumo:
We have identified YkbA from Bacillus subtilis as a novel member of the L-amino acid transporter (LAT) family of amino acid transporters. The protein is approximately 30% identical in amino acid sequence to the light subunits of human heteromeric amino acid transporters. Purified His-tagged YkbA from Escherichia coli membranes reconstituted in proteoliposomes exhibited sodium-independent, obligatory exchange activity for L-serine and L-threonine and also for aromatic amino acids, albeit with less activity. Thus, we propose that YkbA be renamed SteT (Ser/Thr exchanger transporter). Kinetic analysis supports a sequential mechanism of exchange for SteT. Freeze-fracture analysis of purified, functionally active SteT in proteoliposomes, together with blue native polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized purified SteT, suggest that the transporter exists in a monomeric form. Freeze-fracture analysis showed spherical particles with a diameter of 7.4 nm. Transmission electron microscopy revealed elliptical particles (diameters 6 x 7 nm) with a distinct central depression. To our knowledge, this is the first functional characterization of a prokaryotic member of the LAT family and the first structural data on an APC (amino acids, polyamines, and choline for organocations) transporter. SteT represents an excellent model to study the molecular architecture of the light subunits of heteromeric amino acid transporters and other APC transporters.
Resumo:
The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 → Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 → Ala or Phe13 → Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.
Resumo:
The amino acid sequences of a number of closely related proteins ("napin") isolated from Brassica napus were determined by mass spectrometry without prior separation into individual components. Some of these proteins correspond to those previously deduced (napA, BngNAP1, and gNa), chiefly from DNA sequences. Others were found to differ to a varying extent (BngNAP1', BngNAP1A, BngNAP1B, BngNAP1C, gNa', and gNaA). The short chains of gNa and gNa' and of BngNAP1 and BngNAP1' differ by the replacement of N-terminal proline by pyroglutamic acid; the long chains of gNaA and BngNAP1B contain a six amino acid stretch, MQGQQM, which is present in gNa (according to its DNA sequence) but absent from BngNAP1 and BngNAP1C. These alternations of sequences between napin isoforms are most likely due to homologous recombination of the genetic material, but some of the changes may also be due to RNA editing. The amino acids that follow the untruncated C termini of those napin chains for which the DNA sequences are known (napA, BngNAP1, and gNa) are aromatic amino acids. This suggests that the processing of the proprotein leading to the C termini of the two chains is due to the action of a protease that specifically cleaves a G/S-F/Y/W bond.
Resumo:
We have developed a system for the isolation of Neurospora crassa mutants that shows altered responses to blue light. To this end we have used the light-regulated promoter of the albino-3 gene fused to the neutral amino acid permease gene mtr. The product of the mtr gene is required for the uptake of neutral aliphatic and aromatic amino acids, as well as toxic analogs such as p-flurophenylalanine or 4-methyltryptophan. mtr trp-2-carrying cells were transformed with the al-3 promoter-mtr wild-type gene (al-3p-mtr+) to obtain a strain with a light-regulated tryptophan uptake. This strain is sensitive to p-fluorophenylalanine when grown under illumination and resistant when grown in the dark. UV mutagenesis of the al-3p-mtr(+)-carrying strain allowed us to isolate two mutant strains, BLR-1 and BLR-2 (blue light regulator), that are light-resistant to p-fluorophenylalanine and have lost the ability to grow on tryptophan. These two strains have a pale-orange phenotype and show down-regulation of all the photoregulated genes tested (al-3, al-1, con-8, and con-10). Mutations in the BLR strains are not allelic with white collar 1 or white collar 2, regulatory genes that are also involved in the response to blue light.