999 resultados para areal type


Relevância:

60.00% 60.00%

Publicador:

Resumo:

对白水河自然保护区进行了生物多样性和植物区系调查,根据获得的生物多样性数据和标本的鉴定结果分析,得到结果和推论如下:1.白水河自然保护区生物多样性的垂直分布格局1.1 植物群落α 多样性随海拔梯度的变化乔木种的丰富度及多样性随海拔上升表现出明显的线性下降趋势。而灌木和草本物种丰富度及多样性随海拔上升表现出抛物线式的下降趋势。乔木种从海拔1400m 的15 种至林线时下降为2 种;灌木和草本植物分别从35 和38 种至山顶时下降为5 种和20 种。乔木物种随海拔升高出现明显的物种替代现象,表明海拔梯度包含了多种环境因子的梯度效应,影响着植物群落的分布与结构及物种多样性。1.2 植物群落β 多样性随海拔梯度的变化海拔2200 m 左右是一个明显的生境转折点。海拔2200 米以下相邻群落的相似性( CJ ) 明显大于海拔2200 m 以上的群落,说明海拔2200 m 以下的群落间共有种多,生境差异较小;而海拔2200 以上的群落则相反,相似性较低。低海拔区由于人为干扰较大,所以群落具有较高的物种丰富度,相邻群落之间的物种替换总量(Cody 指数) 较大。海拔2800 米到海拔3200 米之间因杜鹃群落的影响,物种替换总量(Cody 指数) 略有升高。研究β 多样性沿海拔梯度的变化必须考虑到物种丰富度和群落类型的影响,用不同指数从不同角度能更好地理解β 多样性沿环境梯度的变化。2.白水河自然保护区植物区系性质及起源白水河自然保护区自产种子植物计138 科421 属990 种。本文在科、属的水平上对该保护区植物区系特性进行了较深入的统计和分析。统计表明,温带和热带分布型均占有相当比重,但温带分布型稍占优势;热带、亚热带和温带的科、属多,中国特有属也有相当比例,它们是保护区具有特征意义的类群,其中许多属为古老和残遗成分。结论认为白水河保护区植物区系起源古老,较完好的保存了北极-第三纪古植物群。We have collected the specimens and gotten the biodiversity datas of BaiShuihe Nature Reserve in Peng Zhou,analysed the datas,the results as follows:1. Diversity of the plant community along altitudinal gradient1.1 α diversity of the plant communities along altitudinal gradientFrom 1400m to 3900m at Baishuihe Nature Reserve, 52 plots were investigatedwith an interval 100m in altitude; α diversity and β diversity of plant communitiesand their variety along altitudinal gradient were studied. The results showed that indifferent successional layers of trees, richness and diversity decreased linearly withthe increase of altitude. But shrub and herb layers don’t decrease linearly with theincrease of altitude. Tree species decreased from 15 species at 1400m so only 2species at timberline. Shrub and herb species decreased from 35 and 38 species at2000m to 5 and 20 species at 3800m respectively. Tree species are replacedobviously with the increase of altitude; It shows that altitude includes manyenvironmental facts, which infect the distribution, structure and diversity of plant population.1.2 The variety of βdiversity along altitudinal gradient.The entironment changed obviously near 2200m according to our research. Forsimilarity(CJ) between neighboring plots above 2200m is larger than wich below it.It shows that below 2200m,the neighboring plots has more same species,and thehabitats of neighboring plots has more similarity. Above 2200 is the other way round.The plant communites have higher species richness and species turnoverlargestly between neighboring plots because of the disturbance from humanity at lowaltitude. Between 2800m and 3200m species turnover not so obviously because ofmore Rhododendron live there.We should think over species and the types of plant communities effect thevariety of β diversity along altitude gradient. Use more biodiversity indexs and fromseveral aspects to understand the variety of β diversity along altitudinal gradient.2.Origin and characteristic features of Bai Shuihe Nature Reserve990 species of wild seed plants (belonging to 421 generas in 138 families) inthe floristic region of Bai Shuihe Nature Reserve were reported here. The statisticsand comparatively intensive analysis at generic and familiar levelss. Based on thestatistics,the results show that both temperate and tropical distribution types areacounted for considerable proportion of the total,but formal is a little moreimportant than the later. The North Temperate and E.Asia-N.America disjunctedpatterns are more concentrated in this area. These may be considered as thecharacteristic features of Bai Shuihe Nature Reserve flora, while many of them arearchaic and relic elements. According to above data,the floristic region of BaiShuihe Nature Reserve may be considered as a typical region in Chinese flora. Also,the flora of Bai Shuihe Nature Reserve are originated since ancient time as a wellconserved Arctic-Tertiar flora.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computerbased simulation technique for modeling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be redicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness of the proximal femur were more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and threedimensional FEA demonstrating a non-linear increase and decrease in sensitivity, respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three dimensional FEA demonstrated a parabolic-type relationship, with maximum stiffness achieved at an angle of approximately 15o. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and twodimensional FEA had statistically equal sensitivities (0.41±0.20 and 0.42±0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24±0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent upon anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss-Hermite coefficients h(3) and h(4)) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps. Here we present data for five nearby early-type galaxies to similar to three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The need for high temporal and spatial resolution precipitation data for hydrological analyses has been discussed in several studies. Although rain gauges provide valuable information, a very dense rain gauge network is costly. As a result, several new ideas have been emerged to help estimating areal rainfall with higher temporal and spatial resolution. Rabiei et al. (2013) observed that moving cars, called RainCars (RCs), can potentially be a new source of data for measuring rainfall amounts. The optical sensors used in that study are designed for operating the windscreen wipers and showed promising results for rainfall measurement purposes. Their measurement accuracy has been quantified in laboratory experiments. Considering explicitly those errors, the main objective of this study is to investigate the benefit of using RCs for estimating areal rainfall. For that, computer experiments are carried out, where radar rainfall is considered as the reference and the other sources of data, i.e. RCs and rain gauges, are extracted from radar data. Comparing the quality of areal rainfall estimation by RCs with rain gauges and reference data helps to investigate the benefit of the RCs. The value of this additional source of data is not only assessed for areal rainfall estimation performance, but also for use in hydrological modeling. The results show that the RCs considering measurement errors derived from laboratory experiments provide useful additional information for areal rainfall estimation as well as for hydrological modeling. Even assuming higher uncertainties for RCs as obtained from the laboratory up to a certain level is observed practical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The infrared (IR) spectroscopic data and Raman spectroscopic properties for a series of 13 “pinwheel-like” homoleptic bis(phthalocyaninato) rare earth complexes M[Pc(α-OC5H11)4]2 [M = Y and Pr–Lu except Pm; H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected and comparatively studied. Both the IR and Raman spectra for M[Pc(α-OC5H11)4]2 are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues, namely M(Pc)2 and M[Pc(OC8H17)8]2, but resemble (for IR) or are a bit more complicated (for Raman) than those of heteroleptic counterparts M(Pc)[Pc(α-OC5H11)4], revealing the decreased molecular symmetry of these double-decker compounds, namely S8. Except for the obvious splitting of the isoindole breathing band at 1110–1123 cm−1, the IR spectra of M[Pc(α-OC5H11)4]2 are quite similar to those of corresponding M(Pc)[Pc(α-OC5H11)4] and therefore are similarly assigned. With laser excitation at 633 nm, Raman bands derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. The IR spectra reveal that the frequencies of pyrrole stretching and pyrrole stretching coupled with the symmetrical CH bending of –CH3 groups are sensitive to the rare earth ionic size, while the Raman technique shows that the bands due to the isoindole stretchings and the coupled pyrrole and aza stretchings are similarly affected. Nevertheless, the phthalocyanine monoanion radical Pc′− IR marker band of bis(phthalocyaninato) complexes involving the same rare earth ion is found to shift to lower energy in the order M(Pc)2 > M(Pc)[Pc(α-OC5H11)4] > M[Pc(α-OC5H11)4]2, revealing the weakened π–π interaction between the two phthalocyanine rings in the same order.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman spectra were recorded in the range 400–1800 cm−1 for a series of 15 mixed \[tetrakis(4-tert-butylphenyl)porphyrinato](2,3-naphthalocyaninato) rare earth double-deckers M(TBPP)(Nc) (M = Y; La–Lu except Pm) using laser excitation at 632.8 and 785 nm. Comparisons with bis(naphthalocyaninato) rare earth counterparts reveal that the vibrations of the metallonaphthalocyanine M(Nc) fragment dominate the Raman features of M(TBPP)(Nc). When excited with radiation of 632.8 nm, the most intense vibration appears at about 1595 cm−1, due to the naphthalene stretching. These complexes exhibit the marker Raman band for Nc•− as a medium-intense band in the range 1496–1507 cm−1, attributed to the coupling of pyrrole and aza stretching, while the marker Raman band of Nc2− in intermediate-valence Ce(TBPP)(Nc) appears as a strong band at 1493 cm−1 and is due to the isoindole stretchings. By contrast, when excited with radiation of 785 nm that is in close resonance with the main Q absorption band of the naphthalocyanine ligand, the ring radial vibrations at ca 680 and 735 cm−1 for MIII(TBPP)(Nc) are selectively intensified and are the most intense bands. For the cerium double-decker, the most intense vibration also acting as the marker Raman band of Nc2− appears at 1497 cm−1 with contributions from both pyrrole CC and aza CN stretches. The same vibrational modes show weak to medium intensity scattering at 1506–1509 cm−1 for MIII(TBPP)(Nc) and this is the marker Raman band of Nc•− when thus excited. The scatterings due to the Nc breathings, ring radial vibration, aza group stretchings, naphthalene stretchings, benzoisoindole stretchings and the coupling of pyrrole CC and aza CN stretchings in MIII(TBPP)(Nc) are all slightly blue shifted along with the decrease in rare earth ionic radius, confirming the effects of increased ring–ring interactions on the Raman characteristics of naphthalocyanine in the mixed ring double-deckers.