944 resultados para arc extinction
Resumo:
Systematic protocols that use decision rules or scores arc, seen to improve consistency and transparency in classifying the conservation status of species. When applying these protocols, assessors are typically required to decide on estimates for attributes That are inherently uncertain, Input data and resulting classifications are usually treated as though they arc, exact and hence without operator error We investigated the impact of data interpretation on the consistency of protocols of extinction risk classifications and diagnosed causes of discrepancies when they occurred. We tested three widely used systematic classification protocols employed by the World Conservation Union, NatureServe, and the Florida Fish and Wildlife Conservation Commission. We provided 18 assessors with identical information for 13 different species to infer estimates for each of the required parameters for the three protocols. The threat classification of several of the species varied from low risk to high risk, depending on who did the assessment. This occurred across the three Protocols investigated. Assessors tended to agree on their placement of species in the highest (50-70%) and lowest risk categories (20-40%), but There was poor agreement on which species should be placed in the intermediate categories, Furthermore, the correspondence between The three classification methods was unpredictable, with large variation among assessors. These results highlight the importance of peer review and consensus among multiple assessors in species classifications and the need to be cautious with assessments carried out 4), a single assessor Greater consistency among assessors requires wide use of training manuals and formal methods for estimating parameters that allow uncertainties to be represented, carried through chains of calculations, and reported transparently.
Resumo:
The Atlantic rainforest species Ocotea catharinensis, Ocotea odorifera, and Ocotea porosa have been extensively harvested in the past for timber and oil extraction and are currently listed as threatened due to overexploitation. To investigate the genetic diversity and population structure of these species, we developed 8 polymorphic microsatellite markers for O. odorifera from an enriched microsatellite library by using 2 dinucleotide repeats. The microsatellite markers were tested for cross-amplification in O. catharinensis and O. porosa. The average number of alleles per locus was 10.2, considering all loci over 2 populations of O. odorifera. Observed and expected heterozygosities for O. odorifera ranged from 0.39 to 0.93 and 0.41 to 0.92 across populations, respectively. Cross-amplification of all loci was successfully observed in O. catharinensis and O. porosa except 1 locus that was found to lack polymorphism in O. porosa. Combined probabilities of identity in the studied Ocotea species were very low ranging from 1.0 x 10-24 to 7.7 x 10-24. The probability of exclusion over all loci estimated for O. odorifera indicated a 99.9% chance of correctly excluding a random nonparent individual. The microsatellite markers described in this study have high information content and will be useful for further investigations on genetic diversity within these species and for subsequent conservation purposes.
Resumo:
Shallow subsurface layers of gold nanoclusters were formed in polymethylmethacrylate (PMMA) polymer by very low energy (49 eV) gold ion implantation. The ion implantation process was modeled by computer simulation and accurately predicted the layer depth and width. Transmission electron microscopy (TEM) was used to image the buried layer and individual nanoclusters; the layer width was similar to 6-8 nm and the cluster diameter was similar to 5-6 nm. Surface plasmon resonance (SPR) absorption effects were observed by UV-visible spectroscopy. The TEM and SPR results were related to prior measurements of electrical conductivity of Au-doped PMMA, and excellent consistency was found with a model of electrical conductivity in which either at low implantation dose the individual nanoclusters are separated and do not physically touch each other, or at higher implantation dose the nanoclusters touch each other to form a random resistor network (percolation model). (C) 2009 American Vacuum Society. [DOI: 10.1116/1.3231449]
Resumo:
Estimates of greenhouse-gas emissions from deforestation are highly uncertain because of high variability in key parameters and because of the limited number of studies providing field measurements of these parameters. One such parameter is burning efficiency, which determines how much of the original forest`s aboveground carbon stock will be released in the burn, as well as how much will later be released by decay and how much will remain as charcoal. In this paper we examined the fate of biomass from a semideciduous tropical forest in the ""arc of deforestation,"" where clearing activity is concentrated along the southern edge of the Amazon forest. We estimated carbon content, charcoal formation and burning efficiency by direct measurements (cutting and weighing) and by line-intersect sampling (LIS) done along the axis of each plot before and after burning of felled vegetation. The total aboveground dry biomass found here (219.3 Mg ha(-1)) is lower than the values found in studies that have been done in other parts of the Amazon region. Values for burning efficiency (65%) and charcoal formation (6.0%, or 5.98 Mg C ha(-1)) were much higher than those found in past studies in tropical areas. The percentage of trunk biomass lost in burning (49%) was substantially higher than has been found in previous studies. This difference may be explained by the concentration of more stems in the smaller diameter classes and the low humidity of the fuel (the dry season was unusually long in 2007, the year of the burn). This study provides the first measurements of forest burning parameters for a group of forest types that is now undergoing rapid deforestation. The burning parameters estimated here indicate substantially higher burning efficiency than has been found in other Amazonian forest types. Quantification of burning efficiency is critical to estimates of trace-gas emissions from deforestation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Long-term assessments of species assemblages are valuable tools for detecting species ecological preferences and their dispersal tracks, as well as for assessing the possible effects of alien species on native communities. Here we report a 50-year-long study on population dynamics of the four species of land flatworms (Platyhelminthes, Tricladida, Terricola) that have colonized or become extinct in a 70-year-old Atlantic Forest regrowth remnant through the period 1955-2006. On the one hand, the two initially most abundant species, which are native to the study site, Notogynaphallia ernesti and Geoplana multicolor have declined over decades and at present do not exist in the forest remnant. The extinction of these species is most likely related with their preference for open vegetation areas, which presently do not exist in the forest remnant. On the other hand, the neotropical Geoplaninae 1 and the exotic Endeavouria septemlineata were detected in the forest only very recently. The long-term study allowed us to conclude that Geoplaninae 1 was introduced into the study area, although it is only known from the study site. Endeavouria septemlineata, an active predator of the exotic giant African snail, is originally known from Hawaii. This land flatworm species was observed repeatedly in Brazilian anthropogenic areas, and this is the first report of the species in relatively well preserved native forest, which may be evidence of an ongoing adaptive process. Monitoring of its geographic spread and its ecological role would be a good practice for preventing potential damaging effects, since it also feeds on native mollusk fauna, as we observed in lab conditions.
Resumo:
Electric arc furnace (EAF) dust is a waste generated in the EAF during the steel production process. Among different wastes, EAF dust represents one of the most hazardous, since it contains heavy metals such as Zn, Fe, Cr, Cd and Pb. The goal of the present work is to characterise the waste through chemical analysis, particle size distribution, X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy detection and thermal analysis. The waste sample is composed essentially of spherical particles and has a very small particle size and the majority of the identified elements were Fe, Zn, Ca, Cr, Mn, K and Si. The XRD has presented compounds such as ZnO, ZnFe2O4, Fe2O3, MnO, SiO2, FeFe2O4 and MnAl2O4. According to the thermal analysis results, up to 1000 degrees C the total weight loss was similar to 5%. The results of waste characterisation are very important to these further investigations.
Resumo:
Recent attempts to explain the susceptibility of vertebrates to declines worldwide have largely focused on intrinsic factors such as body size, reproductive potential, ecological specialization, geographical range and phylogenetic longevity. Here, we use a database of 145 Australian marsupial species to test the effects of both intrinsic and extrinsic factors in a multivariate comparative approach. We model five intrinsic (body size, habitat specialization, diet, reproductive rate and range size) and four extrinsic (climate and range overlap with introduced foxes, sheep and rabbits) factors. We use quantitative measures of geographical range contraction as indices of decline. We also develop a new modelling approach of phylogenetically independent contrasts combined with imputation of missing values to deal simultaneously with phylogenetic structuring and missing data. One extrinsic variable-geographical range overlap with sheep-was the only consistent predictor of declines. Habitat specialization was independently but less consistently associated with declines. This suggests that extrinsic factors largely determine interspecific variation in extinction risk among Australian marsupials, and that the intrinsic factors that are consistently associated with extinction risk in other vertebrates are less important in this group. We conclude that recent anthropogenic changes have been profound enough to affect species on a continent-wide scale, regardless of their intrinsic biology.
Resumo:
Affective learning, the learning of likes and dislikes, is proposed to differ from signal learning, the learning of relationships between events. However, affective learning research varies in the methodology used, and in addition, researchers concerned primarily with affective learning tend to use different paradigms from those concerned with signal learning. The current research used an affective priming task in addition to verbal ratings to assess changes in the valence of neutral geometric shapes in an aversive differential conditioning procedure. After acquisition, affective learning was present as indexed by ratings and affective priming, whereas after extinction, affective learning remained significant only in the ratings. This study suggests that different measures of affective learning may be differentially sensitive to valence, which has implications for studies that employ verbal ratings as the sole measure of affective learning. Moreover, there is no evidence from the current study that affective learning differs from signal learning.
Resumo:
Fear relevance, the potential of a stimulus to become quickly associated with fear, is a characteristic assumed to have an evolutionary basis and to result in preferential processing. Previous research has shown that fear relevant stimuli share a number of characteristics, negative valence and preferential identification in a visual search task, for instance. The present research examined whether these two characteristics can be acquired by non-fear relevant stimuli (geometric shapes) as a result of Pavlovian fear conditioning. Two experiments employed an aversive learning paradigm with geometric shape CSs and a shock US, with stimulus ratings, affective priming and visual search performance assessed before and after acquisition and after extinction. Differential electrodermal responses, larger during CS1 than CS, were present during acquisition but not during extinction. Affective priming results suggest that the CS1 acquired negative valence during acquisition, which was lost during extinction. However, negative valence as indexed by more negative ratings for CS1 than for CS shapes seemed to survive extinction. Preferential attentional processing as indexed by faster detection of CS1 among CS shapes than vice versa on the visual search task also remained. The current research confirmed that characteristics of fear relevant stimuli can be acquired in an aversive learning episode and that they may be extinguished. This supports the proposal that fear relevance may be malleable through learning.
Resumo:
The acquisition and extinction of affective valence to neutral geometrical shape conditional stimuli was investigated in three experiments. Experiment 1 employed a differential conditioning procedure with aversive shock USs. Differential electrodermal responding was evident during acquisition and lost during extinction. As indexed by verbal ratings, the CS1 acquired negative valence during acquisition,which was reduced after extinction. Affective priming, a reaction time based demand free measure of stimulus valence, failed to provide evidence for affective learning. Experiment 2 employed pictures of happy and angry faces as USs.Valence ratings after acquisitionweremore positive for theCS paired with happy faces (CS-H) and less positive for the CS paired with angry faces (CS-A) than during baseline. Extinction training reduced the extent of acquired valence significantly for both CSs, however, ratings of the CS-A remained different from baseline. Affective priming confirmed these results yielding differences between CS-A and CS-H after acquisition for pleasant and unpleasant targets, but for pleasant targets only after extinction. Experiment 3 replicated the design of Experiment 2, but presented the US pictures backwardly masked. Neither rating nor affective priming measures yielded any evidence for affective learning. The present results confirm across two different experimental procedures that, contrary to predictions from dual process accounts of human learning, affective learning is subject to extinction.
Resumo:
Models of population dynamics are commonly used to predict risks in ecology, particularly risks of population decline. There is often considerable uncertainty associated with these predictions. However, alternatives to predictions based on population models have not been assessed. We used simulation models of hypothetical species to generate the kinds of data that might typically be available to ecologists and then invited other researchers to predict risks of population declines using these data. The accuracy of the predictions was assessed by comparison with the forecasts of the original model. The researchers used either population models or subjective judgement to make their predictions. Predictions made using models were only slightly more accurate than subjective judgements of risk. However, predictions using models tended to be unbiased, while subjective judgements were biased towards over-estimation. Psychology literature suggests that the bias of subjective judgements is likely to vary somewhat unpredictably among people, depending on their stake in the outcome. This will make subjective predictions more uncertain and less transparent than those based on models. (C) 2004 Elsevier SAS. All rights reserved.
Resumo:
The link between body size and risk of extinction has been the focus of much recent attention. For Australian terrestrial mammals this link is of particular interest because it is widely believed that species in the intermediate size range of 35-5500 g (the critical weight range) have been the most prone to recent extinction. But the relationship between body size and extinction risk in Australian mammals has never been subject to a robust statistical analysis. Using a combination of randomization tests and phylogenetic comparative analyses, we found that Australian mammal extinctions and declines have been nonrandom with respect to body size, but we reject the hypothesis of a critical weight range at intermediate sizes. Small species appear to be the least prone to extinction, but extinctions have not been significantly clustered around intermediate sizes. Our results suggest that hypotheses linking intermediate body size with high risk of extinction in Australian mammals are misguided and that the focus of future research should shift to explaining why the smallest species are the most resistant to extinction.
Resumo:
We investigated the effects of conditional stimulus fear-relevance and of instructed extinction on human Pavlovian conditioning as indexed by electrodermal responses and verbal ratings of conditional stimulus unpleasantness. Half of the participants (n = 64) were trained with pictures of snakes and spiders (fear-relevant) as conditional stimuli, whereas the others were trained with pictures of flowers and mushrooms (fear-irrelevant) in a differential aversive Pavlovian conditioning procedure. Half of the participants in each group were instructed after the completion of acquisition that no more unconditional stimuli were to be presented. Extinction of differential electrodermal responses required more trials after training with fear-relevant pictures. Moreover, there was some evidence that verbal instructions did not affect extinction of second interval electrodermal responses to fear-relevant pictures. However, neither fear-relevance nor instructions affected the changes in rated conditional stimulus pleasantness. This dissociation across measures is interpreted as reflecting renewal of Pavlovian learning.