999 resultados para arbitrary sharing configurations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonnegative matrix factorization based methods provide one of the simplest and most effective approaches to text mining. However, their applicability is mainly limited to analyzing a single data source. In this paper, we propose a novel joint matrix factorization framework which can jointly analyze multiple data sources by exploiting their shared and individual structures. The proposed framework is flexible to handle any arbitrary sharing configurations encountered in real world data. We derive an efficient algorithm for learning the factorization and show that its convergence is theoretically guaranteed. We demonstrate the utility and effectiveness of the proposed framework in two real-world applications–improving social media retrieval using auxiliary sources and cross-social media retrieval. Representing each social media source using their textual tags, for both applications, we show that retrieval performance exceeds the existing state-of-the-art techniques. The proposed solution provides a generic framework and can be applicable to a wider context in data mining wherever one needs to exploit mutual and individual knowledge present across multiple data sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radiative pressure exerted by line interactions is a prominent driver of outflows in astrophysical systems, being at work in the outflows emerging from hot stars or from the accretion discs of cataclysmic variables, massive young stars and active galactic nuclei. In this work, a new radiation hydrodynamical approach to model line-driven hot-star winds is presented. By coupling a Monte Carlo radiative transfer scheme with a finite volume fluid dynamical method, line-driven mass outflows may be modelled self-consistently, benefiting from the advantages of Monte Carlo techniques in treating multiline effects, such as multiple scatterings, and in dealing with arbitrary multidimensional configurations. In this work, we introduce our approach in detail by highlighting the key numerical techniques and verifying their operation in a number of simplified applications, specifically in a series of self-consistent, one-dimensional, Sobolev-type, hot-star wind calculations. The utility and accuracy of our approach are demonstrated by comparing the obtained results with the predictions of various formulations of the so-called CAK theory and by confronting the calculations with modern sophisticated techniques of predicting the wind structure. Using these calculations, we also point out some useful diagnostic capabilities our approach provides. Finally, we discuss some of the current limitations of our method, some possible extensions and potential future applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hierarchical hidden Markov model (HHMM) is an extension of the hidden Markov model to include a hierarchy of the hidden states. This form of hierarchical modeling has been found useful in applications such as handwritten character recognition, behavior recognition, video indexing, and text retrieval. Nevertheless, the state hierarchy in the original HHMM is restricted to a tree structure. This prohibits two different states from having the same child, and thus does not allow for sharing of common substructures in the model. In this paper, we present a general HHMM in which the state hierarchy can be a lattice allowing arbitrary sharing of substructures. Furthermore, we provide a method for numerical scaling to avoid underflow, an important issue in dealing with long observation sequences. We demonstrate the working of our method in a simulated environment where a hierarchical behavioral model is automatically learned and later used for recognition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nonnegative matrix factorization based methods provide one of the simplest and most effective approaches to text mining. However, their applicability is mainly limited to analyzing a single data source. In this chapter, we propose a novel joint matrix factorization framework which can jointly analyze multiple data sources by exploiting their shared and individual structures. The proposed framework is flexible to handle any arbitrary sharing configurations encountered in real world data. We derive an efficient algorithm for learning the factorization and show that its convergence is theoretically guaranteed. We demonstrate the utility and effectiveness of the proposed framework in two real-world applications—improving social media retrieval using auxiliary sources and cross-social media retrieval. Representing each social media source using their textual tags, for both applications, we show that retrieval performance exceeds the existing state-of-the-art techniques. The proposed solution provides a generic framework and can be applicable to a wider context in data mining wherever one needs to exploit mutual and individual knowledge present across multiple data sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nature of tetrahedral molecular fragments is investigated in SiSe2 glasses using the molecular-dynamics method. The glass consists of both edge-sharing (ES) and corner-sharing tetrahedra. The ES tetrahedra are the building blocks of chain-like-molecular fragments. The two-edge-sharing tetrahedra are the nucleus, and corner-sharing configurations provide connecting hinges between fragments. Statistics of rings and fragments reveals that threefold and eightfold rings are most abundant, chainlike fragments that are typically 10-15 angstrom long occur mostly in eightfold rings, and the longest fragments occur in elevenfold rings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamics of a passive back-to-back test rig have been characterised, leading to a multi-coordinate approach for the analysis of arbitrary test configurations. Universal joints have been introduced into a typical pre-loaded back-to-back system in order to produce an oscillating torsional moment in a test specimen. Two different arrangements have been investigated using a frequency-based sub-structuring approach: the receptance method. A numerical model has been developed in accordance with this theory, allowing interconnection of systems with two-coordinates and closed multi-loop schemes. The model calculates the receptance functions and modal and deflected shapes of a general system. Closed form expressions of the following individual elements have been developed: a servomotor, damped continuous shaft and a universal joint. Numerical results for specific cases have been compared with published data in literature and experimental measurements undertaken in the present work. Due to the complexity of the universal joint and its oscillating dynamic effects, a more detailed analysis of this component has been developed. Two models have been presented. The first represents the joint as two inertias connected by a massless cross-piece. The second, derived by the dynamic analysis of a spherical four-link mechanism, considers the contribution of the floating element and its gyroscopic effects. An investigation into non-linear behaviour has led to a time domain model that utilises the Runge-Kutta fourth order method for resolution of the dynamic equations. It has been demonstrated that the torsional receptances of a universal joint, derived using the simple model, result in representation of the joint as an equivalent variable inertia. In order to verify the model, a test rig has been built and experimental validation undertaken. The variable inertia of a universal joint has lead to a novel application of the component as a passive device for the balancing of inertia variations in slider-crank mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The method of isotope substitution in neutron diffraction was used to measure the structure of liquid ZnCl2 at 332(5)?°C and glassy ZnCl2 at 25(1)?°C. The partial structure factors were obtained from the measured diffraction patterns by using the method of singular value decomposition and by using the reverse Monte Carlo procedure. The partial structure factors reproduce the diffraction patterns measured by high-energy x-ray diffraction once a correction for the resolution function of the neutron diffractometer has been made. The results show that the predominant structural motif in both phases is the corner sharing ZnCl4 tetrahedron and that there is a small number of edge-sharing configurations, these being more abundant in the liquid. The tetrahedra organize on an intermediate length scale to give a first sharp diffraction peak in the measured diffraction patterns at a scattering vector kFSDP?1 Å-1 that is most prominent for the Zn-Zn correlations. The results support the notion that the relative fragility of tetrahedral glass forming MX2 liquids is related to the occurrence of edge-sharing units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Forensic analysis requires the acquisition and management of many different types of evidence, including individual disk drives, RAID sets, network packets, memory images, and extracted files. Often the same evidence is reviewed by several different tools or examiners in different locations. We propose a backwards-compatible redesign of the Advanced Forensic Formatdan open, extensible file format for storing and sharing of evidence, arbitrary case related information and analysis results among different tools. The new specification, termed AFF4, is designed to be simple to implement, built upon the well supported ZIP file format specification. Furthermore, the AFF4 implementation has downward comparability with existing AFF files.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Classical results in unconditionally secure multi-party computation (MPC) protocols with a passive adversary indicate that every n-variate function can be computed by n participants, such that no set of size t < n/2 participants learns any additional information other than what they could derive from their private inputs and the output of the protocol. We study unconditionally secure MPC protocols in the presence of a passive adversary in the trusted setup (‘semi-ideal’) model, in which the participants are supplied with some auxiliary information (which is random and independent from the participant inputs) ahead of the protocol execution (such information can be purchased as a “commodity” well before a run of the protocol). We present a new MPC protocol in the trusted setup model, which allows the adversary to corrupt an arbitrary number t < n of participants. Our protocol makes use of a novel subprotocol for converting an additive secret sharing over a field to a multiplicative secret sharing, and can be used to securely evaluate any n-variate polynomial G over a field F, with inputs restricted to non-zero elements of F. The communication complexity of our protocol is O(ℓ · n 2) field elements, where ℓ is the number of non-linear monomials in G. Previous protocols in the trusted setup model require communication proportional to the number of multiplications in an arithmetic circuit for G; thus, our protocol may offer savings over previous protocols for functions with a small number of monomials but a large number of multiplications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study lazy structure sharing as a tool for optimizing equivalence testing on complex data types, We investigate a number of strategies for implementing lazy structure sharing and provide upper and lower bounds on their performance (how quickly they effect ideal configurations of our data structure). In most cases when the strategies are applied to a restricted case of the problem, the bounds provide nontrivial improvements over the naive linear-time equivalence-testing strategy that employs no optimization. Only one strategy, however, which employs path compression, seems promising for the most general case of the problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal correctness of complex multi-party network protocols can be difficult to verify. While models of specific fixed compositions of agents can be checked against design constraints, protocols which lend themselves to arbitrarily many compositions of agents-such as the chaining of proxies or the peering of routers-are more difficult to verify because they represent potentially infinite state spaces and may exhibit emergent behaviors which may not materialize under particular fixed compositions. We address this challenge by developing an algebraic approach that enables us to reduce arbitrary compositions of network agents into a behaviorally-equivalent (with respect to some correctness property) compact, canonical representation, which is amenable to mechanical verification. Our approach consists of an algebra and a set of property-preserving rewrite rules for the Canonical Homomorphic Abstraction of Infinite Network protocol compositions (CHAIN). Using CHAIN, an expression over our algebra (i.e., a set of configurations of network protocol agents) can be reduced to another behaviorally-equivalent expression (i.e., a smaller set of configurations). Repeated applications of such rewrite rules produces a canonical expression which can be checked mechanically. We demonstrate our approach by characterizing deadlock-prone configurations of HTTP agents, as well as establishing useful properties of an overlay protocol for scheduling MPEG frames, and of a protocol for Web intra-cache consistency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an online distributed algorithm, the Causation Logging Algorithm (CLA), in which Autonomous Systems (ASes) in the Internet individually report route oscillations/flaps they experience to a central Internet Routing Registry (IRR). The IRR aggregates these reports and may observe what we call causation chains where each node on the chain caused a route flap at the next node along the chain. A chain may also have a causation cycle. The type of an observed causation chain/cycle allows the IRR to infer the underlying policy routing configuration (i.e., the system of economic relationships and constraints on route/path preferences). Our algorithm is based on a formal policy routing model that captures the propagation dynamics of route flaps under arbitrary changes in topology or path preferences. We derive invariant properties of causation chains/cycles for ASes which conform to economic relationships based on the popular Gao-Rexford model. The Gao-Rexford model is known to be safe in the sense that the system always converges to a stable set of paths under static conditions. Our CLA algorithm recovers the type/property of an observed causation chain of an underlying system and determines whether it conforms to the safe economic Gao-Rexford model. Causes for nonconformity can be diagnosed by comparing the properties of the causation chains with those predicted from different variants of the Gao-Rexford model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The particular characteristics and affordances of technologies play a significant role in human experience by defining the realm of possibilities available to individuals and societies. Some technological configurations, such as the Internet, facilitate peer-to-peer communication and participatory behaviors. Others, like television broadcasting, tend to encourage centralization of creative processes and unidirectional communication. In other instances still, the affordances of technologies can be further constrained by social practices. That is the case, for example, of radio which, although technically allowing peer-to-peer communication, has effectively been converted into a broadcast medium through the legislation of the airwaves. How technologies acquire particular properties, meanings and uses, and who is involved in those decisions are the broader questions explored here. Although a long line of thought maintains that technologies evolve according to the logic of scientific rationality, recent studies demonstrated that technologies are, in fact, primarily shaped by social forces in specific historical contexts. In this view, adopted here, there is no one best way to design a technological artifact or system; the selection between alternative designs—which determine the affordances of each technology—is made by social actors according to their particular values, assumptions and goals. Thus, the arrangement of technical elements in any technological artifact is configured to conform to the views and interests of those involved in its development. Understanding how technologies assume particular shapes, who is involved in these decisions and how, in turn, they propitiate particular behaviors and modes of organization but not others, requires understanding the contexts in which they are developed. It is argued here that, throughout the last century, two distinct approaches to the development and dissemination of technologies have coexisted. In each of these models, based on fundamentally different ethoi, technologies are developed through different processes and by different participants—and therefore tend to assume different shapes and offer different possibilities. In the first of these approaches, the dominant model in Western societies, technologies are typically developed by firms, manufactured in large factories, and subsequently disseminated to the rest of the population for consumption. In this centralized model, the role of users is limited to selecting from the alternatives presented by professional producers. Thus, according to this approach, the technologies that are now so deeply woven into human experience, are primarily shaped by a relatively small number of producers. In recent years, however, a group of three interconnected interest groups—the makers, hackerspaces, and open source hardware communities—have increasingly challenged this dominant model by enacting an alternative approach in which technologies are both individually transformed and collectively shaped. Through a in-depth analysis of these phenomena, their practices and ethos, it is argued here that the distributed approach practiced by these communities offers a practical path towards a democratization of the technosphere by: 1) demystifying technologies, 2) providing the public with the tools and knowledge necessary to understand and shape technologies, and 3) encouraging citizen participation in the development of technologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We ask how the three known mechanisms for solving cost sharing problems with homogeneous cost functions - the value, the proportional, and the serial mechanisms - should be extended to arbitrary problem. We propose the Ordinality axiom, which requires that cost shares be invariante under all transactions preserving the nature of a cost sharing problem.