543 resultados para aposematic coloration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poison frogs of the family Dendrobatidae contain cryptic as well as brightly colored, presumably aposematic species. The prevailing phylogenetic hypothesis assumes that the aposematic taxa form a monophyletic group while the cryptic species (Colostethus sensu lato) are basal and paraphyletic. Analysis of 86 dendrobatid sequences of a fragment of the 16S rRNA gene resulted in a much more complex scenario, with several clades that contained aposematic as well as cryptic taxa. Monophyly of the aposematic taxa was significantly rejected by SH-tests in an analysis with additional 12S and 16S rDNA fragments and reduced taxon sampling. The brightly colored Allobates femoralis and A. zaparo (Silverstone) comb. nov. (previously Epipedobates) belong in a clade with cryptic species of Colostethus. Additionally, Colostethus pratti was grouped with Epipedobates, and Colostethus bocagei with Cryptophyllobates. In several cases, the aposematic species have general distributions similar to those of their non-aposematic sister groups, indicating multiple instances of regional radiations in which some taxa independently acquired bright color. From a classificatory point of view, it is relevant that the type species of Minyobates, M. steyermarki, resulted as the sister group of the genus Dendrobates, and that species of Mannophryne and Nephelobates formed monophyletic clades, corroborating the validity of these genera. Leptodactylids of the genera Hylodes and Crossodactylus were not unambiguously identified as the sister group of the Dendrobatidae; these were monophyletic in all analyses and probably originated early in the radiation of Neotropical hyloid frogs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In nature, many animals use body coloration to communicate with each other. For example, colorations can be used as signals between individuals of the same species, but also to recognise individuals of other species, and if they may comprise a threat or not. Many animals use protective coloration to avoid predation. The two most common strategies of protective coloration are camouflage and aposematism. Camouflaged animals have coloration that minimises detection, usually by matching colours or structures in the background. Aposematic animals, on the other hand, signal to predators that they are defended. The defence can be physical structures, such as spikes and hairs, or chemical compounds that make the animal distasteful or even deadly toxic. In order for the warning signal to be effective, the predator has to recognise it as such. Studies have shown that birds for example, that are important visual predators on insects, learn to recognise and avoid unpalatable prey faster if they contrast the background or have large internal contrasts. Typical examples of aposematic species have conspicuous colours like yellow, orange or red, often in combination with black. My thesis focuses on the appearance and function of aposematic colour patterns. Even though researchers have studied aposematism for over a century, there is still a lot we do not know about the phenomenon. For example, as it is crucial that the predators recognise a warning signal, aposematic colorations should assumingly evolve homogeneously and be selected for maximal conspicuousness. Instead, there is an extensive variation of colours and patterns among warning colorations, and it is not uncommon to find typical cryptic colours, such as green and brown in aposematic colour patterns. One hypothesis to this variation is that an aposematic coloration does not have to be maximally signalling in order to be effective, instead it is sufficient to have distinct features that can be easily distinguished from edible prey. To be maximally conspicuous is one way to achieve this, but not the only way. Another hypothesis is that aposematic prey that do not exhibit maximal conspicuousness can exploit both camouflage and aposematism in a distance-dependent fashion, by being signalling when seen close up but camouflaged at a distance. Many prey animals also make use of both strategies by shifting colour at different ecological conditions such as seasonal variations, fluctuations in food resources or between life stages. Yet another explanation for the variation may be that prey animals are usually exposed to several predator species that vary in visual perception and tolerance towards various toxins. The aim with this thesis is, by studying their functions, to understand why aposematic warning signals vary in appearance, specifically in the level of conspicuousness, and if warning coloration can be combined with camouflage. In paper I, I investigated if the colour pattern of the aposematic larva of the Apollo butterfly (Parnassius apollo) can switch function with viewing distance, and be signalling at close range but camouflaged at a distance, by comparing detection time between different colour variants and distances. The results show that the natural coloration has a dual distance-dependent function. Moreover, the study shows that an aposematic coloration does not have to be selected for maximal conspicuousness. A prey animal can optimise its coloration primarily by avoiding detection, but also by investing in a secondary defence, which presence can be signalled if detected. In paper II, I studied how easily detected the coloration of the firebug (Pyrrhocoris apterus), a typical aposematic species, is at different distances against different natural backgrounds, by comparing detection time between different colour variants. Here, I found no distance-dependent switch in function. Instead, the results show that the coloration of the firebug is selected for maximal conspicuousness. One explanation for this is that the firebug is more mobile than the butterfly larva in study I, and movement is often incompatible with efficient camouflage. In paper III, I investigated if a seasonal related colour change in the chemically defended striated shieldbug (Graphosoma lineatum) is an adaptation to optimise a protective coloration by shifting from camouflage to aposematism between two seasons. The results confirm the hypothesis that the coloration expressed in the late summer has a camouflage function, blending in with the background. Further, I investigated if the internal pattern as such increased the effectiveness of the camouflage. Again, the results are in accordance with the hypothesis, as the patterned coloration was more difficult to detect than colorations lacking an internal pattern. This study shows how an aposematic species can optimise its defence by shifting from camouflage to aposematism, but in a different fashion than studied in paper I. The aim with study IV was to study the selection on aposematic signals by identifying characteristics that are common for colorations of aposematic species, and that distinguish them from colorations of other species. I compared contrast, pattern element size and colour proportion between a group of defended species and a group of undefended species. In contrast to my prediction, the results show no significant differences between the two groups in any of the analyses. One explanation for the non-significant results could be that there are no universal characteristics common for aposematic species. Instead, the selection pressures acting on defended species vary, and therefore affect their appearance differently. Another explanation is that all defended species may not have been selected for a conspicuous aposematic warning coloration. Taken together, my thesis shows that having a conspicuous warning coloration is not the only way to be aposematic. Also, aposematism and camouflage is not two mutually exclusive opposites, as there are prey species that exploit both strategies. It is also important to understand that prey animals are exposed to various selection pressures and trade-offs that affect their appearance, and determines what an optimal coloration is for each species or environment. In conclusion, I hold that the variation among warning colorations is larger and coloration properties that have been considered as archetypically aposematic may not be as widespread and representative as previously assumed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is commonly assumed that natural selection imposed by predators is the prevailing force driving the evolution of aposematic traits. Here, we demonstrate that aposematic signals are shaped by sexual selection as well. We evaluated sexual selection for coloration brightness in populations of the poison frog Oophaga [Dendrobates] pumilio in Panama's Bocas del Toro archipelago. We assessed female preferences for brighter males by manipulating the perceived brightness of spectrally matched males in two-way choice experiments. We found strong female preferences for bright males in two island populations and weaker or ambiguous preferences in females from mainland populations. Spectral reflectance measurements, coupled with an O. pumilio-specific visual processing model, showed that O. pumilio coloration was significantly brighter in island than in mainland morphs. In one of the island populations (Isla Solarte), males were significantly more brightly colored than females. Taken together, these results provide evidence for directional sexual selection on aposematic coloration and document sexual dimorphism in vertebrate warning coloration. Although aposematic signals have long been upheld as exemplars of natural selection, our results show that sexual selection should not be ignored in studies of aposematic evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Egg and pupa of Lobeza dentilinea Schaus, 1901 are described and illustrated for the first time. Eggs are smooth, dome-shaped, and greenish at oviposition. Last instar larvae have an aposematic coloration and the chaetotaxy is very similar to other notodontines, except for the number of lateral setae: L. dentilinea has three instead of four lateral setae on abdominal segments A3-A6. Pupae are light brown and typical of the family, with the last abdominal segments broadly round. Evidence from the adult morphology supporting the placement of the genus in Notodontinae includes proboscis smaller than the length of the head, epiphysis with more than half the length of tibia, tarsal claws simple, and labial palpi short. Male and female are confidently associated, and a redescription of the species is presented based on both sexes. Larvae of L. dentilinea are here recorded feeding on a Melastomataceae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The poison frogs (family Dendrobatidae) are terrestrial anuran amphibians displaying a wide range of coloration and toxicity. These frogs generally have been considered to be aposematic, but relatively little research has been carried out to test the predictions of this hypothesis. Here we use a comparative approach to test one prediction of the hypothesis of aposematism: that coloration will evolve in tandem with toxicity. Recently, we developed a phylogenetic hypothesis of the evolutionary relationships among representative species of poison frogs, using sequences from three regions of mitochondrial DNA. In our analysis, we use that DNA-based phylogeny and comparative analysis of independent contrasts to investigate the correlation between coloration and toxicity in the poison frog family (Dendrobatidae). Information on the toxicity of different species was obtained from the literature. Two different measures of the brightness and extent of coloration were used. (i) Twenty-four human observers were asked to rank different photos of each different species in the analysis in terms of contrast to a leaf-littered background. (ii) Color photos of each species were scanned into a computer and a computer program was used to obtain a measure of the contrast of the colors of each species relative to a leaf-littered background. Comparative analyses of the results were carried out with two different models of character evolution: gradual change, with branch lengths proportional to the amount of genetic change, and punctuational change, with all change being associated with speciation events. Comparative analysis using either method or model indicated a significant correlation between the evolution of toxicity and coloration across this family. These results are consistent with the hypothesis that coloration in this group is aposematic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colour pattern variation is a striking and widespread phenomenon. Differential predation risk between individuals is often invoked to explain colour variation, but empirical support for this hypothesis is equivocal. We investigated differential conspicuousness and predation risk in two species of Australian rock dragons, Ctenophorus decresii and C. vadnappa. To humans, the coloration of males of these species varies between 'bright' and 'dull'. Visual modelling based on objective colour measurements and the spectral sensitivities of avian visual pigments showed that dragon colour variants are differentially conspicuous to the visual system of avian predators when viewed against the natural background. We conducted field experiments to test for differential predation risk, using plaster models of 'bright' and 'dull' males. 'Bright' models were attacked significantly more often than 'dull' models suggesting that differential conspicuousness translates to differential predation risk in the wild. We also examined the influence of natural geographical range on predation risk. Results from 22 localities suggest that predation rates vary according to whether predators are familiar with the prey species. This study is among the first to demonstrate both differential conspicuousness and differential predation risk in the wild using an experimental protocol. (C) 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The unravelling of hair pigmentation genetics and robust delivery systems to the hair follicle (HF) will allow the development of a new class of colouring products. The challenge will be changing hair colour from inside out by safely regulating the activity of target genes through the specific delivery of synthetic/natural compounds, proteins, genes, or small RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ornament expression fluctuates with age in many organisms. Whether these changes are adaptively plastic is poorly known. In order to understand the ultimate function of melanin-based ornaments, we studied their within-individual fluctuations and their covariation with fitness-related traits. In barn owls (Tyto alba), individuals vary from reddish-brown pheomelanic to white and from immaculate to marked with black eumelanic spots, males being less reddish and less spotted than females. During the first molt, both sexes became less pheomelanic, females displayed larger spots and males fewer spots, but the extent of these changes was not associated with reproduction. At subsequent molts, intra-individual changes in melanin-based traits covaried with simultaneous reproduction changes. Adult females bred earlier in the season and laid larger eggs when they became scattered with larger spots, while adults of both sexes produced larger broods when they became whiter. These results suggest that the production of melanin pigments and fitness-related life history traits are concomitantly regulated in a sex-specific way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trade-offs between the benefits of current reproduction and the costs to future reproduction and survival are widely recognized. However, such trade-offs might only be detected when resources become limited to the point where investment in one activity jeopardizes investment in others. The resolution of the trade-off between reproduction and self-maintenance is mediated by hormones such as glucocorticoids which direct behaviour and physiology towards self-maintenance under stressful situations. We investigated this trade-off in male and female barn owls in relation to the degree of heritable melanin-based coloration, a trait that reflects the ability to cope with various sources of stress in nestlings. We increased circulating corticosterone in breeding adults by implanting a corticosterone-releasing-pellet, using birds implanted with a placebo-pellet as controls. In males, elevated corticosterone reduced the activity (i.e. reduced home-range size and distance covered within the home-range) independently of coloration, while we could not detect any effect on hunting efficiency. The effect of experimentally elevated corticosterone on female behaviour was correlated with their melanin-based coloration. Corticosterone (cort-) induced an increase in brooding behaviour in small-spotted females, while this hormone had no detectable effect in large-spotted females. Cort-females with small eumelanic spots showed the normal body-mass loss during the early nestling period, while large spotted cort-females did not lose body mass. This indicates that corticosterone induced a shift towards self-maintenance in males independently on their plumage, whereas in females this shift was observed only in large-spotted females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Local adaptation is a major mechanism underlying the maintenance of phenotypic variation in spatially heterogeneous environments. In the barn owl (Tyto alba), dark and pale reddish-pheomelanic individuals are adapted to conditions prevailing in northern and southern Europe, respectively. Using a long-term dataset from Central Europe, we report results consistent with the hypothesis that the different pheomelanic phenotypes are adapted to specific local conditions in females, but not in males. Compared to whitish females, reddish females bred in sites surrounded by more arable fields and less forests. Colour-dependent habitat choice was apparently beneficial. First, whitish females produced more fledglings when breeding in wooded areas, whereas reddish females when breeding in sites with more arable fields. Second, cross-fostering experiments showed that female nestlings grew wings more rapidly when both their foster and biological mothers were of similar colour. The latter result suggests that mothers should particularly produce daughters in environments that best match their own coloration. Accordingly, whiter females produced fewer daughters in territories with more arable fields. In conclusion, females displaying alternative melanic phenotypes bred in habitats providing them with the highest fitness benefits. Although small in magnitude, matching habitat selection and local adaptation may help maintain variation in pheomelanin coloration in the barn owl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stressful situations during development can shape the phenotype for life by provoking a trade-off between development and survival. Stress hormones, mainly glucocorticoids, play an important orchestrating role in this trade-off. Hence, how stress sensitive an animal is critically determines the phenotype and ultimately fitness. In several species, darker eumelanic individuals are less sensitive to stressful conditions than less eumelanic conspecifics, which may be due to the pleiotropic effects of genes affecting both coloration and physiological traits. We experimentally tested whether the degree of melanin-based coloration is associated with the sensitivity to an endocrine response to stressful situations in the barn owl. We artificially administered the mediator of a hormonal stress response, corticosterone, to nestlings to examine the prediction that corticosterone-induced reduction in growth rate is more pronounced in light eumelanic nestlings than in darker nest mates. To examine whether such an effect may be genetically determined, we swapped hatchlings between randomly chosen pairs of nests. We first showed that corticosterone affects growth and, thus, shapes the phenotype. Second, we found that under corticosterone administration, nestlings with large black spots grew better than nestlings with small black spots. As in the barn owl the expression of eumelanin-based coloration is heritable and not sensitive to environmental conditions, it is therefore a reliable, genetically based sign of the ability to cope with an increase in blood corticosterone level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carotenoid-based yellowish to red plumage colors are widespread visual signals used in sexual and social communication. To understand their ultimate signaling functions, it is important to identify the proximate mechanism promoting variation in coloration. Carotenoid-based colors combine structural and pigmentary components, but the importance of the contribution of structural components to variation in pigment-based colors (i.e., carotenoid-based colors) has been undervalued. In a field experiment with great tits (Parus major), we combined a brood size manipulation with a simultaneous carotenoid supplementation in order to disentangle the effects of carotenoid availability and early growth condition on different components of the yellow breast feathers. By defining independent measures of feather carotenoid content (absolute carotenoid chroma) and background structure (background reflectance), we demonstrate that environmental factors experienced during the nestling period, namely, early growth conditions and carotenoid availability, contribute independently to variation in yellow plumage coloration. While early growth conditions affected the background reflectance of the plumage, the availability of carotenoids affected the absolute carotenoid chroma, the peak of maximum ultraviolet reflectance, and the overall shape, that is, chromatic information of the reflectance curves. These findings demonstrate that environment-induced variation in background structure contributes significantly to intraspecific variation in yellow carotenoid-based plumage coloration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific.