961 resultados para apoptosis, ceramide, APC,p38, JNK, AKT, ASK, cell death


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La sepsis es un evento inflamatorio generalizado del organismo inducido por un daño causado generalmente por un agente infeccioso. El patógeno más frecuentemente asociado con esta entidad es el Staphylococcus aureus, responsable de la inducción de apoptosis en células endoteliales debida a la producción de ceramida. Se ha descrito el efecto protector de la proteína C activada (PCA) en sepsis y su relación con la disminución de la apoptosis de las células endoteliales. En este trabajo se analizó la activación de las quinasas AKT, ASK1, SAPK/JNK y p38 en un modelo de apoptosis endotelial usando las técnicas de Western Blotting y ELISA. Las células endoteliales (EA.hy926), se trataron con C2-ceramida (130μM) en presencia de inhibidores químicos de cada una de estas quinasas y PCA. La supervivencia de las células en presencia de inhibidores químicos y PCA fue evaluada por medio de ensayos de activación de las caspasas 3, 7 y 9, que verificaban la muerte celular por apoptosis. Los resultados evidencian que la ceramida reduce la activación de AKT y aumenta la activación de las quinasas ASK, SAPK/JNK y p38, en tanto que PCA ejerce el efecto contrario. Adicionalmente se encontró que la tiorredoxina incrementa la activación/fosforilación de AKT, mientras que la quinasa p38 induce la defosforilación de AKT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathogenic Yersinia spp. carry a large common plasmid that encodes a number of essential virulence determinants. Included in these factors are the Yersinia-secreted proteins called Yops. We analyzed the consequences of wild-type and mutant strains of Yersinia pseudotuberculosis interactions with the macrophage cell line RAW264.7 and murine bone marrow-derived macrophages. Wild-type Y. pseudotuberculosis kills ≈70% of infected RAW264.7 macrophages and marrow-derived macrophages after an 8-h infection. We show that the cell death mediated by Y. pseudotuberculosis is apoptosis. Mutant Y. pseudotuberculosis that do not make any Yop proteins no longer cause host cell death. Attachment to host cells via invasin or YadA is necessary for the cell death phenotype. Several Yop mutant strains that fail to express one or more Yop proteins were engineered and then characterized for their ability to cause host cell death. A mutant with a polar insertion in YpkA Ser/Thr kinase that does not express YpkA or YopJ is no longer able to cause apoptosis. In contrast, a mutant no longer making YopE or YopH (a tyrosine phosphatase) induces apoptosis in macrophages similar to wild type. When yopJ is added in trans to the ypkAyopJ mutant, the ability of this strain to signal programmed cell death in macrophages is restored. Thus, YopJ is necessary for inducing apoptosis. The ability of Y. pseudotuberculosis to promote apoptosis of macrophages in cell culture suggests that this process is important for the establishment of infection in the host and for evasion of the host immune response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here that the activation of the interleukin 1 beta (IL-1 beta)-converting enzyme (ICE) family is likely to be one of the crucial events of tumor necrosis factor (TNF) cytotoxicity. The cowpox virus CrmA protein, a member of the serpin superfamily, inhibits the enzymatic activity of ICE and ICE-mediated apoptosis. HeLa cells overexpressing crmA are resistant to apoptosis induced by Ice but not by Ich-1, another member of the Ice/ced-3 family of genes. We found that the CrmA-expressing HeLa cells are resistant to TNF-alpha/cycloheximide (CHX)-induced apoptosis. Induction of apoptosis in HeLa cells by TNF-alpha/CHX is associated with secretion of mature IL-1 beta, suggesting that an IL-1 beta-processing enzyme, most likely ICE itself, is activated by TNF-alpha/CHX stimulation. These results suggest that one or more members of the ICE family sensitive to CrmA inhibition are activated and play a critical role in apoptosis induced by TNF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neutrophils in tissue culture spontaneously undergo programmed cell death (apoptosis), a process characterized by well-defined morphological alterations affecting the cell nucleus. We found that these morphological changes were preceded by intracellular acidification and that acidification and the apoptotic changes in nuclear morphology were both delayed by granulocyte colony-stimulating factor (G-CSF). Among the agents that defend neutrophils against intracellular acidification is a vacuolar H(+)-ATPase that pumps protons out of the cytosol. When this proton pump was inhibited by bafilomycin A1, G-CSF no longer protected the neutrophils against apoptosis. We conclude that G-CSF delays apoptosis in neutrophils by up-regulating the cells' vacuolar H(+)-ATPase and that intracellular acidification is an early event in the apoptosis program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Regeneration of lost tissues depends on the precise interpretation of molecular signals that control and coordinate the onset of proliferation, cellular differentiation and cell death. However, the nature of those molecular signals and the mechanisms that integrate the cellular responses remain largely unknown. The planarian flatworm is a unique model in which regeneration and tissue renewal can be comprehensively studied in vivo. The presence of a population of adult pluripotent stem cells combined with the ability to decode signaling after wounding enable planarians to regenerate a complete, correctly proportioned animal within a few days after any kind of amputation, and to adapt their size to nutritional changes without compromising functionality. Here, we demonstrate that the stress-activated c-jun-NH2-kinase (JNK) links wound-induced apoptosis to the stem cell response during planarian regeneration. We show that JNK modulates the expression of wound-related genes, triggers apoptosis and attenuates the onset of mitosis in stem cells specifically after tissue loss. Furthermore, in pre-existing body regions, JNK activity is required to establish a positive balance between cell death and stem cell proliferation to enable tissue renewal, remodeling and the maintenance of proportionality. During homeostatic degrowth, JNK RNAi blocks apoptosis, resulting in impaired organ remodeling and rescaling. Our findings indicate that JNK-dependent apoptotic cell death is crucial to coordinate tissue renewal and remodeling required to regenerate and to maintain a correctly proportioned animal. Hence, JNK might act as a hub, translating wound signals into apoptotic cell death, controlled stem cell proliferation and differentiation, all of which are required to coordinate regeneration and tissue renewal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma brucei rhodesiense can be induced to undergo apoptosis after stimulation with Con A. As cell death in these parasites is associated with de novo gene expression we have applied a differential display technique, Randomly Amplified Differential Expressed Sequence-Polymerase Chain Reaction (RADES-PCR) to the study of gene expression during Con A induced cell death in these organisms. Twenty-two differentially displayed products have been cloned and sequenced. These represent the first endogenous genes to be identified as implicated in cellular death in trypanosomatids (the most primitive eukaryote in which apoptosis has been described). Evidence for an ancestral death machinery, `proto-apoptosis' in single celled organisms is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Various studies from hypoxic-ischemic animals haveinvestigated neuroprotection by targeting necrosis and apoptosis with inconclusive results. Three types of cell death have been described: apoptosis, necrosis and more recently, autophagic cell death. While autophagy is a physiological process of degradation of cellular components, excessive autophagy may be involved in cell death. Recent studies showed that inhibition of autophagy is neuroprotective in rodent neonatal models of cerebral ischemia. Furthermore, neonatal hypoxia-ischemia strongly increased neuronal autophagic flux which is linked to cell death in a rat model of perinatal asphyxia. Following our observations in animals, the aim of the present study was to characterize the different neuronal death phenotypes and to clarify whether autophagic cell death could be also involved in neuronal death in the human newborns after perinatal asphyxia. Methods: we selected retrospectively and anonymously all newborns who died in our unit of neonatology between 2004 and 2009, with the following criteria: gestational age >36 weeks, diagnosis of perinatal asphyxia (Apgar <5 at 5 minutes, arterial pH <7.0 at 1 hour of life and encephalopathy Sarnat III) and performed autopsy. The brain of 6 cases in asphyxia group and 6 control cases matching gestational age who died of pulmonary or other malformations were selected. On histological sections of thalamus, frontal cortex and hippocampus, different markers of apoptosis (caspase 3, TUNEL), autophagosomes (LC3-II) and lysosomes (LAMP1, Cathepsin D) were tested by immunohistochemistry. Results: Preliminary studies on markers of apoptosis (TUNEL, caspase 3) and of autophagy (Cathepsin D, LC3II, LAMP1) showed an expected increase of apoptosis, but also an increase of neuronal autophagic flux in the selected areas. The distribution seems to be region specific. Conclusion: This is the first time that autophagic flux linked with cell death is shown in brain of human babies, in association with hypoxicischemic encephalopathy. This work leads to a better understanding of the mechanisms associated with neuronal death following perinatal asphyxia and determines whether autophagy could be a promising therapeutic target.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programmed cell death (PCD) in insect metamorphosis assumes a great diversity of morphology and controlling processes that are still not well understood. With the objective of obtaining information about the PCD process, salivary glands of Drosophila arizonae and D. mulleri were studied during larval-pupal development. From the results, it can be concluded that the type of the PCD that occurs in these organs is morphologically typical of apoptosis (formation of apoptotic nuclei, followed by fragmentation into apoptotic bodies). Histolysis happens in both species, between 22 and 23 h after pupation. There were no significant differences between the species studied. Apoptosis does not occur simultaneously in all cells. Cytoplasmic acid phosphatase activity gradually increases during development, suggesting the existence of acid phosphatases that are only expressed during the apoptotic stage. Twenty hours after pupation, salivary glands already show biochemical alterations relative to nuclear permeability such as acidification, possibly due to the fusion of lysosomes with the nucleus a few hours before apoptosis. Autophagy seems to act together with apoptosis and has a secondary role in cell death. ©FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticancer activities of cinnamic acid derivatives include induction of apoptosis by irreversible DNA damage leading to cell death. The present work aimed to compare the cytotoxic and genotoxic potential of cinnamic acid in human melanoma cell line (HT-144) and human melanocyte cell line derived from blue nevus (NGM). Viability assay showed that the IC50 for HT-144 cells was 2.4 mM, while NGM cells were more resistant to the treatment. The growth inhibition was probably associated with DNA damage leading to DNA synthesis inhibition, as shown by BrdU incorporation assay, induction of nuclear aberrations and then apoptosis. The frequency of cell death caused by cinnamic acid was higher in HT-144 cells. Activated-caspase 3 staining showed apoptosis after 24 hours of treatment with cinnamic acid 3.2 mM in HT-144 cells, but not in NGM. We observed microtubules disorganization after cinnamic acid exposure, but this event and cell death seem to be independent according to M30 and tubulin labeling. The frequency of micronucleated HT-144 cells was higher after treatment with cinnamic acid (0.4 and 3.2 mM) when compared to the controls. Cinnamic acid 3.2 mM also increased the frequency of micronucleated NGM cells indicating genotoxic activity of the compound, but the effects were milder. Binucleation and multinucleation counting showed similar results. We conclude that cinnamic acid has effective antiproliferative activity against melanoma cells. However, the increased frequency of micronucleation in NGM cells warrants the possibility of genotoxicity and needs further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. RESULTS: We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. CONCLUSIONS: This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphosphonates are potent inhibitors of osteoclast function widely used to treat conditions of excessive bone resorption, including tumor bone metastases. Recent evidence indicates that bisphosphonates have direct cytotoxic activity on tumor cells and suppress angiogenesis, but the associated molecular events have not been fully characterized. In this study we investigated the effects of zoledronate, a nitrogen-containing bisphosphonate, and clodronate, a non-nitrogen-containing bisphosphonate, on human umbilical vein endothelial cell (HUVEC) adhesion, migration, and survival, three events essential for angiogenesis. Zoledronate inhibited HUVEC adhesion mediated by integrin alphaVbeta3, but not alpha5beta1, blocked migration and disrupted established focal adhesions and actin stress fibers without modifying cell surface integrin expression level or affinity. Zoledronate treatment slightly decreased HUVEC viability and strongly enhanced tumor necrosis factor (TNF)-induced cell death. HUVEC treated with zoledronate and TNF died without evidence of enhanced annexin-V binding, chromatin condensation, or nuclear fragmentation and caspase dependence. Zoledronate inhibited sustained phosphorylation of focal adhesion kinase (FAK) and in combination with TNF, with and without interferon (IFN) gamma, of protein kinase B (PKB/Akt). Constitutive active PKB/Akt protected HUVEC from death induced by zoledronate and TNF/IFNgamma. Phosphorylation of c-Src and activation of NF-kappaB were not affected by zoledronate. Clodronate had no effect on HUVEC adhesion, migration, and survival nor did it enhanced TNF cytotoxicity. Taken together these data demonstrate that zoledronate sensitizes endothelial cells to TNF-induced, caspase-independent programmed cell death and point to the FAK-PKB/Akt pathway as a novel zoledronate target. These results have potential implications to the clinical use of zoledronate as an anti-angiogenic or anti-cancer agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) are key regulators that have been linked to cell survival and death. Among the main classes of MAPKs, c-jun N-terminal kinase (JNK) has been shown to mediate cell stress responses associated with apoptosis. In Vitro, hypoxia induced a significant increase in 661W cell death that paralleled increased activity of JNK and c-jun. 661W cells cultured in presence of the inhibitor of JNK (D-JNKi) were less sensitive to hypoxia-induced cell death. In vivo, elevation in intraocular pressure (IOP) in the rat promoted cell death that correlated with modulation of JNK activation. In vivo inhibition of JNK activation with D-JNKi resulted in a significant and sustained decrease in apoptosis in the ganglion cell layer, the inner nuclear layer and the photoreceptor layer. These results highlight the protective effect of D-JNKi in ischemia/reperfusion induced cell death of the retina.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Ceramide kinase (CerK) catalyzes the generation of ceramide-1-phosphate which may regulate various cellular functions, including inflammatory reactions and cell growth. Here, we studied the effect of a recently developed CerK inhibitor, NVP-231, on cancer cell proliferation and viability and investigated the role of cell cycle regulators implicated in these responses. Experimental Approach The breast and lung cancer cell lines MCF-7 and NCI-H358 were treated with increasing concentrations of NVP-231 and DNA synthesis, colony formation and cell death were determined. Flow cytometry was performed to analyse cell cycle distribution of cells and Western blot analysis was used to detect changes in cell cycle regulator expression and activation. Key Results In both cell lines, NVP-231 concentration-dependently reduced cell viability, DNA synthesis and colony formation. Moreover it induced apoptosis, as measured by increased DNA fragmentation and caspase-3 and caspase-9 cleavage. Cell cycle analysis revealed that NVP-231 decreased the number of cells in S phase and induced M phase arrest with an increased mitotic index, as determined by increased histone H3 phosphorylation. The effect on the cell cycle was even more pronounced when NVP-231 treatment was combined with staurosporine. Finally, overexpression of CerK protected, whereas down-regulation of CerK with siRNA sensitized, cells for staurosporine-induced apoptosis. Conclusions and Implications Our data demonstrate for the first time a crucial role for CerK in the M phase control in cancer cells and suggest its targeted inhibition, using drugs such as NVP-231, in combination with conventional pro-apoptotic chemotherapy.