983 resultados para antibiotic lock therapy
Resumo:
Catheter-related bacteremia (CRB) is one of the various complications related to hemodialysis (HD). As a result of this high rate of infection, the antibiotic lock technique (ALT) has been recommended to prevent CRB. However, adverse effects of ALT such as increased emergence of strains resistant to antibiotics and increased mechanical dysfunction catheter were poorly evaluated. We prospectively evaluated the efficacy of catheter-restricted filling using an antibiotic lock solution in preventing CRB. A total of 233 HD patients requiring 325 new tunneled catheters while waiting for placement and maturation of an arteriovenous fistula or graft were enrolled in this study. Patients with a tunneled catheter were assigned to receive either an antibiotic-heparin lock solution (antibiotic group: cefazolin 10 mg/ml, gentamicin 5 mg/ml, heparin 1,000 U/ml) or a heparin lock solution (no-antibiotic group: heparin 1,000 U/ml) as a catheter lock solution during the interdialytic period. The present study aimed to assess the efficacy of ALT using cefazolin and gentamicin in reducing CRB in patients undergoing HD with tunneled central catheter and to identify its adverse effects. CRB developed in 32.4 % of patients in the no-antibiotic group and in 13.1 % of patients in the antibiotic group. CRB rates per 1,000 catheter-days were 0.57 in the antibiotic group versus 1.74 in the no-antibiotic group (p < 0.0001). Kaplan-Meier analysis also showed that mean CRB-free catheter survival was significantly higher in the antibiotic group than in the no-antibiotic group (log-rank statistic 17.62, p < 0.0001). There was statistically significant difference between the two groups in causative organisms of CRB, with predominance of negative culture in both groups, but this prevalence was higher in ALT group (57.9 vs 90.1 %, p < 0.0001), and the two groups also were different in prevalence of gram-positive bacteria as causing organisms (ALT group 21.05 vs = 0 % in control group, p < 0.0001). There was no statistically significant difference between the two groups in drug-resistant germs. There were statistically significant differences between the two groups in the catheter removal causes, with higher rate of infectious cause in control group (12.32 vs 2.22 %, p < 0.0001) and mechanical cause in ALT group (28.26 vs 37.78 %, p < 0.0001). The results suggest that ALT may be a beneficial means of reducing the CRB rate in HD patients with tunneled catheter, without association between ALT and emergence of strains resistant. However, mechanical complications were more prevalent in antibiotic group. Further studies are required to determine the optimal drug regimen, concentrations for ALT, and its adverse effects. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Vascular access is the major risk factor for bacteremia, hospitalization, and mortality among hemodialysis (HD) patients. The type of vascular access most associated with bloodstream infection is central venous catheter (CVC). The incidence of catheter-related bacteremia ranges between 0.6 and 6.5 episodes per 1000 catheter days and increases linearly with the duration of catheter use. Given the high prevalence of CVC use and its direct association with catheter-related bacteremia, which adversely impacts morbidity and mortality rates and costs among HD patients, several prevention measures aimed at reducing the rates of CVC-related infections have been proposed and implemented. As a result, a large number of clinical trials, systematic reviews, and meta-analyses have been conducted in order to assess the effectiveness, clinical applicability, and long-term adverse effects of such measures. In the following article, prophylactic measures against CVC-related infections in HD patients and their possible advantages and limitations will be discussed, and the more recent literature on clinical experience with prophylactic antimicrobial lock therapy in HD CVCs will be reviewed.
Resumo:
Nosocomial infections in patients requiring renal replacement therapy have a high impact on morbidity and mortality. The most dangerous complication is bloodstream infection (BSI) associated with the vascular access, with a low BSI risk in arteriovenous fistulas or grafts and a comparatively high risk in central venous catheters. The single most important measure for preventing BSI is therefore the reduction of catheter use by means of early fistula formation. As this is not always feasible, prevention should focus on educational efforts, hand hygiene, surveillance of dialysis-associated events, and specific measures at and after the insertion of catheters. Core measures at the time of insertion include choosing the optimal site of insertion, the use of maximum sterile barrier precautions, adequate skin antisepsis, and the choice of catheter type; after insertion, access care needs to ensure hub disinfection and regular dressing changes. The application of antimicrobial locks is reserved for special situations. Evidence suggests that bundling a selection of the aforementioned measures can significantly reduce infection rates. The diagnosis of central line-associated BSI (CLABSI) is based on clinical signs and microbiological findings in blood cultures ideally drawn both peripherally and from the catheter. The prompt installation of empiric antibiotic treatment covering the most commonly encountered organisms is key regarding CLABSI treatment. Catheter removal is recommended in complicated cases or if cultures yield Staphylococcus aureus, enterococci, Pseudomonas or fungi. In other cases, guide wire exchange or catheter salvage strategies with antibiotic lock solutions may be acceptable alternatives.
Resumo:
La infección asociada a inserción de catéter vascular, es un problema cotidiano en las UCI a nivel mundial, a pesar del manejo de protocolos que se han implementado de manera independiente en las distintas instituciones para frenar este fenómeno. El estudio, de tipo observacional, analítico y cohorte concurrente, con 151 pacientes, a los cuales se insertó catéter en la UCI de la Clínica San Pedro Claver.Para el análisis se realizó estadística descriptiva, análisis de sobrevida, pruebas de asociación y regresión de Cox.
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Infektionen zählen bei hämodialysepflichtigen Intensivpatienten zu den häufigsten Todesursachen. Um die Wirksamkeit und Sicherheit der Antibiotikatherapie zu verbessern, müssen verschiedene Faktoren, zum Beispiel die Pharmakodynamik und Pharmakokinetik des Antibiotikums, die Art des Hämodialyseverfahrens, die Art des Dialysefilters und der Zustand des Patienten berücksichtigt werden. Im Rahmen einer klinischen Studie wurde die antibiotische Wirkung von Piperacillin und Ciprofloxacin bei kontinuierlichen Hämodialyseverfahren mittels pharmakokinetischer Methoden bestimmt.Für die klinische Studie wurde eine HPLC-Methode mit kombinierter Festphasenextraktion (SPE) entwickelt und nach den Grenzwerten der EMA Guideline on Bioanalytical Method Validation validiert. Die Methode erwies sich für die gleichzeitige Bestimmung von Piperacillin und Ciprofloxacin in Plasma- und Dialysatproben als valide und zuverlässig. Die ermittelten Konzentrationen der beiden Antibiotika wurden für die Berechnung der pharmakokinetischen Parameter verwendet.In der klinischen Studie wurden bei 24 Intensivpatienten mit kontinuierlicher venovenöser Hämodialyse (CVVHD) bzw. kontinuierlicher venovenöser Hämodiafiltration (CVVHDF), bei denen Piperacillin/Tazobactam, Ciprofloxacin oder eine Kombination dieser Antibiotika indiziert war, die Antibiotikakonzentrationen im Plasma und Dialysat im Steady State gemessen. Unmittelbar vor einer Antibiotikainfusion (0 min) wurde ein Volumen von sechs Milliliter Blut entnommen. Weitere Blutentnahmen erfolgten 30 Minuten nach der Infusion sowie nach 1, 2, 3, 4, 8, 12 und 24 Stunden. Sobald ein Filtratbeutel ausgetauscht wurde, wurden parallel zu den Blutproben Dialysatproben entnommen. Die Konzentrationen von Piperacillin und Ciprofloxacin wurden nach der Festphasenextraktion aus den Plasmaproben mit der validierten HPLC-Methode innerhalb von 15 Minuten zuverlässig bestimmt. Neben den gemessenen Plasmakonzentrationen (Cmax, Cmin) wurden pharmakokinetische Parameter wie t0,5, VdSS, AUC, Cltot, ClCRRT und Clextrarenal berechnet. Für Piperacillin wurde untersucht, ob die Plasmaspiegel der Patienten für das gesamte Dosierungsintervall oberhalb der geforderten vierfachen MHK von 64 mg/l liegen. Für Ciprofloxacin wurde untersucht, ob die aus gemessenen Plasmaspiegeln berechnete AUC den Quotienten aus AUC und MHK (=AUIC) ≥ 125 h erfüllt.Bei zehn der 21 mit Piperacillin behandelten Patienten lagen die Plasmaspiegel unterhalb der angestrebten Konzentration von 64 mg/l für das gesamte Dosierungsintervall. Das Patientenkollektiv wies eine große interindividuelle Variabilität auf. Mit einer Wahrscheinlichkeit von 95 % waren 26 - 70 % der Patienten unterdosiert. In der Gruppe der mit Ciprofloxacin behandelten Patienten wurde die angestrebte AUIC von 125 h nur bei neun der 20 Patienten erreicht. Mit einer Wahrscheinlichkeit von 95 % waren 29 - 76 % der Patienten unterdosiert. Die kontinuierlichen Nierenersatzverfahren hatten nur einen geringen Anteil an der totalen Clearance der untersuchten Antibiotika. Während die Clearance des kontinuierlichen Nierenersatzverfahren bei Piperacillin für ein Drittel der Arzneistoffelimination verantwortlich war, trug diese im Fall von Ciprofloxacin lediglich zu 16 % zur Arzneistoffelimination bei.Die Dosierung von Piperacillin/Tazobactam bzw. Ciprofloxacin sollte bei kritisch kranken Intensivpatienten mit kontinuierlicher Hämodialyse mindestens 4 mal 4/0,5 g pro Tag bzw. 2 mal 400 mg pro Tag betragen. Diese Empfehlungen sind insbesondere für die verwendeten Dialyseverfahren und -bedingungen zutreffend. Zur weiteren Optimierung der Antibiotikatherapie ist ein Therapeutisches Drug Monitoring empfehlenswert.
Resumo:
Acute meningitis is a medical emergency, particularly in patients with rapidly progressing disease, mental status changes or neurological deficits. The majority of cases of bacterial meningitis are caused by a limited number of species, i.e. Streptococcus pneumoniae, Neisseria meningitis, Listeria monocytogenes, group B Streptococci (Streptococcus agalactiae), Haemophilus influenzae and Enterobacteriaceae. Many other pathogens can occasionally cause bacterial meningitis, often under special clinical circumstances. Treatment of meningitis includes two main goals: Eradication of the infecting organism, and management of CNS and systemic complications. Empiric therapy should be initiated without delay, as the prognosis of the disease depends on the time when therapy is started. One or two blood cultures should be obtained before administering the first antibiotic. Empiric therapy is primarily based on the age of the patient, with modifications if there are positive findings on CSF gram stain or if the patient presents with special risk factors. It is safer to choose regimens with broad coverage, as they can usually be modified within 24-48 hours, when antibiotic sensitivities of the infecting organism become available. Adjunctive therapy with dexamethasone is also administered in severely ill patients concomitantly with the first antibiotic dose. In patients who are clinically stable and are unlikely to be adversely affected if antibiotics are not administered immediately, including those with suspected viral or chronic meningitis, a lumbar puncture represents the first step, unless there is clinical suspicion of an intracerebral mass lesion. Findings in the CSF and on CT scan, if performed, will guide the further diagnostic work-up and therapy in all patients.
Resumo:
Pneumococcal meningitis (PM) results in high mortality rates and long-lasting neurological deficits. Hippocampal apoptosis and cortical necrosis are histopathological correlates of neurofunctional sequelae in rodent models and are frequently observed in autopsy studies of patients who die of PM. In experimental PM, inhibition of matrix metalloproteinases (MMPs) and/or tumor necrosis factor (TNF)-converting enzyme (TACE) has been shown to reduce brain injury and the associated impairment of neurocognitive function. However, none of the compounds evaluated in these studies entered clinical development. Here, we evaluated two second-generation MMP and TACE inhibitors with higher selectivity and improved oral availability. Ro 32-3555 (Trocade, cipemastat) preferentially inhibits collagenases (MMP-1, -8, and -13) and gelatinase B (MMP-9), while Ro 32-7315 is an efficient inhibitor of TACE. PM was induced in infant rats by the intracisternal injection of live Streptococcus pneumoniae. Ro 32-3555 and Ro 32-7315 were injected intraperitoneally, starting at 3 h postinfection. Antibiotic (ceftriaxone) therapy was initiated at 18 h postinfection, and clinical parameters (weight, clinical score, mortality rate) were recorded. Myeloperoxidase activities, concentrations of cytokines and chemokines, concentrations of MMP-2 and MMP-9, and collagen concentrations were measured in the cerebrospinal fluid. Animals were sacrificed at 42 h postinfection, and their brains were assessed by histomorphometry for hippocampal apoptosis and cortical necrosis. Both compounds, while exhibiting disparate MMP and TACE inhibitory profiles, decreased hippocampal apoptosis and cortical injury. Ro 32-3555 reduced mortality rates and cerebrospinal fluid TNF, interleukin-1β (IL-1β) and collagen levels, while Ro 32-7315 reduced weight loss and cerebrospinal fluid TNF and IL-6 levels.
Resumo:
In the present study, risk factors for the use of oral antibiotics in weaned piglets were collected on 112 pig farms by a personal questionaire. The most common indication for an antibiotic group therapy was diarrhoea, and the most frequently used antibiotic was Colistin. On average, 27.33 daily doses in the control farms and 387.21 daily doses in the problem farms per 1000 weaners were administered on a given day. The significant risk factors in the multivariate model were poor hygiene in the water supply of suckling piglets, less than two doses ofprestarter feed daily, lack of an all-in-and-all-out production system in weaners, no herd book performance data analysis, and less than two of the legally prescribed veterinary visits per year. Furthermore, the treatment incidence of weaners for oral antibiotics was calculated on the basis of the drug inventory. This study provides evidence that the use of oral antibiotics in weaners can be reduced by interventions in hygiene and management.
Resumo:
BACKGROUND: Given the expanding scope of extracorporeal membrane oxygenation (ECMO) and its variable impact on drug pharmacokinetics as observed in neonatal studies, it is imperative that the effects of the device on the drugs commonly prescribed in the intensive care unit (ICU) are further investigated. Currently, there are no data to confirm the appropriateness of standard drug dosing in adult patients on ECMO. Ineffective drug regimens in these critically ill patients can seriously worsen patient outcomes. This study was designed to describe the pharmacokinetics of the commonly used antibiotic, analgesic and sedative drugs in adult patients receiving ECMO. METHODS: This is a multi-centre, open-label, descriptive pharmacokinetic (PK) study. Eligible patients will be adults treated with ECMO for severe cardiac and/or respiratory failure at five Intensive Care Units in Australia and New Zealand. Patients will receive the study drugs as part of their routine management. Blood samples will be taken from indwelling catheters to investigate plasma concentrations of several antibiotics (ceftriaxone, meropenem, vancomycin, ciprofloxacin, gentamicin, piperacillin-tazobactum, ticarcillin-clavulunate, linezolid, fluconazole, voriconazole, caspofungin, oseltamivir), sedatives and analgesics (midazolam, morphine, fentanyl, propofol, dexmedetomidine, thiopentone). The PK of each drug will be characterised to determine the variability of PK in these patients and to develop dosing guidelines for prescription during ECMO. DISCUSSION: The evidence-based dosing algorithms generated from this analysis can be evaluated in later clinical studies. This knowledge is vitally important for optimising pharmacotherapy in these most severely ill patients to maximise the opportunity for therapeutic success and minimise the risk of therapeutic failure
Resumo:
Bacterial biofilms are associated with 80-90% of infections. Within the biofilm, bacteria are refractile to antibiotics, requiring concentrations >1,000 times the minimum inhibitory concentration. Proteins, carbohydrates and DNA are the major components of biofilm matrix. Pseudomonas aeruginosa (PA) biofilms, which are majorly associated with chronic lung infection, contain extracellular DNA (eDNA) as a major component. Herein, we report for the first time that L-Methionine (L-Met) at 0.5 mu M inhibits Pseudomonas aeruginosa (PA) biofilm formation and disassembles established PA biofilm by inducing DNase expression. Four DNase genes (sbcB, endA, eddB and recJ) were highly up-regulated upon L-Met treatment along with increased DNase activity in the culture supernatant. Since eDNA plays a major role in establishing and maintaining the PA biofilm, DNase activity is effective in disrupting the biofilm. Upon treatment with L-Met, the otherwise recalcitrant PA biofilm now shows susceptibility to ciprofloxacin. This was reflected in vivo, in the murine chronic PA lung infection model. Mice treated with L-Met responded better to antibiotic treatment, leading to enhanced survival as compared to mice treated with ciprofloxacin alone. These results clearly demonstrate that L-Met can be used along with antibiotic as an effective therapeutic against chronic PA biofilm infection.
Resumo:
Many bacteria secrete a highly hydrated framework of extracellular polymer matrix on suitable substrates and embed within the matrix to form a biofilm. Bacterial biofilms are observed on many medical devices, endocarditis, periodontitis and lung infections in cystic fibrosis patients. Bacteria in biofilm are protected from antibiotics and >1,000 times of the minimum inhibitory concentration may be required to treat biofilm infections. Here, we demonstrated that shock waves could be used to remove Salmonella, Pseudomonas and Staphylococcus biofilms in urinary catheters. The studies were extended to a Pseudomonas chronic pneumonia lung infection and Staphylococcus skin suture infection model in mice. The biofilm infections in mice, treated with shock waves became susceptible to antibiotics, unlike untreated biofilms. Mice exposed to shock waves responded to ciprofloxacin treatment, while ciprofloxacin alone was ineffective in treating the infection. These results demonstrate for the first time that, shock waves, combined with antibiotic treatment can be used to treat biofilm infection on medical devices as well as in situ infections.
Resumo:
Cystic fibrosis (CF) is characterised by chronic polymicrobial airway infection and inflammation, which is the major cause of morbidity and mortality. Aggressive use of antimicrobials has been fundamental in increasing the life expectancy of CF patients in recent years. However, enhanced culture and non-culture based detection methods have identified bacteria in the CF lung not previously isolated from CF patients by routine diagnostic microbiology Coupled with increasing antimicrobial resistance, the future of antimicrobial therapy in CF respiratory infection remains challenging. New strategies are needed to address these problems and ensure improvements in life expectancy are maintained. Potential future strategies include the use of new antimicrobial agents and formulations currently in clinical trials, alternative methods of selecting appropriate therapeutic regimens, determination of the pathogenicity of species newly associated with CF and the development of new antimicrobials and adjuvants for use in clinical practice.
Resumo:
Objectives To review the epidemiology of native septic arthritis to establish local guidelines for empirical antibiotic therapy as part of an antibiotic stewardship programme. Methods We conducted a 10 year retrospective study based on positive synovial fluid cultures and discharge diagnosis of septic arthritis in adult patients. Microbiology results and medical records were reviewed. Results Between 1999 and 2008, we identified 233 episodes of septic arthritis. The predominant causative pathogens were methicillin-susceptible Staphylococcus aureus (MSSA) and streptococci (respectively, 44.6% and 14.2% of cases). Only 11 cases (4.7%) of methicillin-resistant S. aureus (MRSA) arthritis were diagnosed, among which 5 (45.5%) occurred in known carriers. For large-joint infections, amoxicillin/clavulanate or cefuroxime would have been appropriate in 84.5% of cases. MRSA and Mycobacterium tuberculosis would have been the most frequent pathogens that would not have been covered. In contrast, amoxicillin/clavulanate would have been appropriate for only 75.3% of small-joint infections (82.6% if diabetics are excluded). MRSA and Pseudomonas aeruginosa would have been the main pathogens not covered. Piperacillin/tazobactam would have been appropriate in 93.8% of cases (P < 0.01 versus amoxicillin/clavulanate). This statistically significant advantage is lost after exclusion of diabetics (P = 0.19). Conclusions Amoxicillin/clavulanate or cefuroxime would be adequate for empirical coverage of large-joint septic arthritis in our area. A broad-spectrum antibiotic would be significantly superior for small-joint infections in diabetics. Systematic coverage of MRSA is not justified, but should be considered for known carriers. These recommendations are applicable to our local setting. They might also apply to hospitals sharing the same epidemiology.
Resumo:
We propose antimicrobial photodynamic therapy (aPDT) as an alternative strategy to reduce the use of antibiotics in shrimp larviculture systems. The growth of a multiple antibiotic resistant Vibrio harveyi strain was effectively controlled by treating the cells with Rose Bengal and photosensitizing for 30 min using a halogen lamp. This resulted in the death of > 50% of the cells within the first 10 min of exposure and the 50% reduction in the cell wall integrity after 30 min could be attributed to the destruction of outer membrane protein of V. harveyi by reactive oxygen intermediates produced during the photosensitization. Further, mesocosm experiments with V. harveyi and Artemia nauplii demonstrated that in 30 min, the aPDT could kill 78.9% and 91.2% of heterotrophic bacterial and Vibrio population respectively. In conclusion, the study demonstrated that aPDT with its rapid action and as yet unreported resistance development possibilities could be a propitious strategy to reduce the use of antibiotics in shrimp larviculture systems and thereby, avoid their hazardous effects on human health and the ecosystem at large.