990 resultados para antibacterial activities
Resumo:
Twelve novel zidovudine derivatives were prepared by modifying 5 '-hydroxyl group of sugar moiety (1-8) and 5-methyl group of thymidine nucleus (9-12) and characterized spectrally. The compounds were evaluated for anti-HIV-1, antitubercular and antibacter
Resumo:
Herbs of the Ericaceae family are commonly found in Algeria and used in traditional medicine as anti- septic, diuretic, astringent, depurative, and to treat scalds and wounds. The methanolic extracts of three species, Arbutus unedo L. (A. unedo, leaves), Erica arborea L. (E. arborea, flowered aerial parts), and Erica multiflora L. (E. multiflora, flowered aerial parts), were compared regarding their content in pheno- lic compounds, their antioxidant, and antibacterial activities. A. unedo harbors the highest content in total phenolics and flavonoids, followed by E. arborea E. multiflora. The contents in total phenolics and flavonoids showed a correlation with the measured antioxidant (hydrogen-donating) activities; this was particularly the case for flavonoids content. The A. unedo extract showed antibacterial activity against all the tested strains (Staphylococcus aureus ATCC 6538, S. aureus C100459, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 9027); however, the E. arborea and E. multiflora extracts showed antibacterial activity only against Gram positive bacteria. Some polyphenols were identified in the three herbs by thin-layer chromatography and high-performance liquid chromatography coupled with diode array and mass spectrometry detection; from these, caffeic acid, p-coumaric acid, naringin, quercetin and kaempferol are reported for the first time in E. multiflora.
Resumo:
A novel lysozyme exhibiting antifungal activity and with a molecular mass of 14.4 kDa in SDS–polyacrylamide gel electrophoresis was isolated from mung bean (Phaseolus mungo) seeds using a procedure that involved aqueous extraction, ammonium sulfate precipitation, ion exchange chromatography on CM-Sephadex, and high-performance liquid chromatography on POROS HS-20. Its N-terminal sequence was very different from that of hen egg white lysozyme. Its pI was estimated to be above 9.7. The specific activity of the lysozyme was 355 U/mg at pH 5.5 and 30 °C. The lysozyme exhibited a pH optimum at pH 5.5 and a temperature optimum at 55 °C. It is reported herein, for the first time, that a novel plant lysozyme exerted an antifungal action toward Fusarium oxysporum, Fusarium solani, Pythium aphanidermatum, Sclerotium rolfsii, and Botrytis cinerea, in addition to an antibacterial action against Staphylococcus aureus.
Resumo:
The antibacterial activities of 18 naturally occurring compounds (including essential oils and some of their isolated constituents, apple and green tea polyphenols, and other plant extracts) against three strains of Mycobacterium avium subsp. paratuberculosis (a bovine isolate [NCTC 8578], a raw-milk isolate [806R], and a human isolate [ATCC 43015]) were evaluated using a macrobroth susceptibility testing method. M. avium subsp. paratuberculosis was grown in 4 ml Middlebrook 7H9 broth containing 10% oleic acid-albumin-dextrose-catalase, 0.05% Tween 80 (or 0.2% glycerol), and 2 µg/ml mycobactin J supplemented with five concentrations of each test compound. The changes in the optical densities of the cultures at 600 nm as a measure of CFU were recorded at intervals over an incubation period of 42 days at 37°C. Six of the compounds were found to inhibit the growth of M. avium subsp. paratuberculosis. The most effective compound was trans-cinnamaldehyde, with a MIC of 25.9 µg/ml, followed by cinnamon oil (26.2 µg/ml), oregano oil (68.2 µg/ml), carvacrol (72.2 µg/ml), 2,5-dihydroxybenzaldehyde (74 µg/ml), and 2-hydroxy-5-methoxybenzaldehyde (90.4 µg/ml). With the exception of carvacrol, a phenolic compound, three of the four most active compounds are aldehydes, suggesting that the structure of the phenolic group or the aldehyde group may be important to the antibacterial activity. No difference in compound activity was observed between the three M. avium subsp. paratuberculosis strains studied. Possible mechanisms of the antimicrobial effects are discussed.
Resumo:
After demonstrating the lack of effectiveness of standard antibiotics against the acquired antibiotic resistance of Bacillus cereus (NCTC 10989), Escherichia coli (NCTC 1186), and Staphylococcus aureus (ATCC 12715), we showed that the following natural substances were antibacterial against these resistant pathogens: cinnamon oil, oregano oil, thyme oil, carvacrol, (S)-perillaldehyde, 3,4-dihydroxybenzoic acid (beta-resorcylic acid), and 3,4-dihydroxyphenethylamine (dopamine). Exposure of the three pathogens to a dilution series of the test compounds showed that oregano oil was the most active substance. The oils and pure compounds exhibited exceptional activity against B. cereus vegetative cells, with oregano oil being active at nanogram, per milliliter levels. In contrast, activities against B. cereus spores were very low. Activities of the test compounds were in the following approximate order: oregano oil > thyme oil approximate to carvacrol > cinnamon oil > perillaldehyde > dopamine > beta-resorcylic acid. The order of susceptibilities of the pathogens to inactivation was as follows: B. cereus (vegetative) much greater than S. aureus approximate to E. coli much greater than B. cereus (spores). Some of the test substances may be effective against antibiotic-resistant bacteria in foods and feeds.
Resumo:
In the present study we address the issue on gut associated lactic acid bacteria (LAB) isolated from the intestine of estuarine fish Mugil cephalus using de Man Rogossa and Sharpe (MRS) agar. LAB isolates were identified biochemically and screened for their ability to inhibit in vitro growth of various fish, shrimp and human pathogens. Most of the LAB isolates displayed an improved antagonism against fish pathogens compared to shrimp and human pathogens. Selected representative strains displaying high antibacterial activity were identified using 16S rRNA gene sequence analysis. Of the selected strains Lactobacillus brevis was the most predominant. Four other species of Lactobacillus, Enterobacter hormaechei and Enterobacter ludwigii were also identified. It was also observed that even among same species, considerable diversity with respect to substrate utilization persisted. Considering the euryhaline nature of grey mullet (Mugil cephalus), the LAB isolated from the gut possessed good tolerance to varying salt concentrations. This finding merits further investigation to evaluate whether the isolated LAB could be used as probiotics in various fresh and sea water aquaculture
Resumo:
Orbifloxacin is a third generation of fluoroquinolone that exhibits increased antibacterial activity against the Enterobacteriaceae, gram-negative and gram-positive bacteria, anaerobes, and mycobacteria. This drug was synthesized in 1987 and developed as a veterinary chemotherapeutic to use for livestock and domestic pets. Orbifloxacin is labeled for the treatment of skin, soft tissue, and urinary tract infections in dogs, and skin and soft tissue infections in cats, but in some countries, orbifloxacin has been given for the treatment of gastrointestinal and respiratory infections in cattle and swine and other animals. The in vitro activity and clinical efficacy of orbifloxacin against naturally occurring bacterial infections of the skin, ear, soft tissue, udder, and gastrointestinal and respiratory systems in different animals have been evaluated and good responses have been found. The minimum inhibitory concentration of orbifloxacin has been determined in various different pathogens and the results found in the literature are shown in this work. The pharmacokinetics of orbifloxacin has been evaluated by different routes of administration in goats, horses, pigs, rabbits, dogs, cats, camels, cattle, sheep, and fish. Orbifloxacin exhibits excellent pharmacokinetic parameters that suggest that this drug may have good clinical effects on various bacterial infections in these species. All methods described in the scientific literature for determination of orbifloxacin in different matrices were collected and discussed. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Wild strawberry, Fragaria vesca L., belongs to Rosaceae family and is commonly found in roadsides and slopes [1]. The most consumed parts of this plant are its sweet small fruits, which constitute a source of vitamins and phenolic compounds, being also used in infusions due to their organoleptic properties and for the treatment of some intestinal disorders [2, 3]. In the present work, F. vesca fruits were evaluated for their nutritional value and further used in the preparation of infusions. The chemical composition of the fruits and corresponding infusions was determined in terms of soluble sugars, organic acids, tocopherols, folates (by HPLC coupled to different detectors), phenolic compounds (by HPLC-DAD/ESI-MS) and mineral elements (atomic absorption spectroscopy). Some of these bioactive compounds were correlated with antioxidant and antibacterial properties evaluated either in infusions as also in hydromethanolic extracts. Carbohydrates were the main macronutrients in the fruits, followed by fat and proteins. Regarding the fatty acids, polyunsaturated fatty acids showed higher prevalence, mainly due to the presence of D-linolenic (Cl8:3n3) and y-linolenic (Cl8:3n6) acids. Sucrose and citric acid were, respectively, the main sugar and organic acid found in the fruits and in its infusions. The microelement found in higher amounts in both samples was manganese, while potassium and calcium were the macroelements present in higher levels in the fruits and infusions, respectively. Both samples presented folates and tocopherols, being ytocopherol the main isoform detected in the fruits, while a-tocopherol was the only isoform quantified in the infusion. The hydromethanolic extract prepared from the fruits gave higher antioxidant and antibacterial activities, namely against Escherichia coli and Pseudomonas aeruginosa, than the infusion; it also showed capacity to inhibit the formation of bacterial biofilm. Both bioactivities are highly correlated with the presence of phenolic compounds, in which the major are ellagic acid derivatives (sanguiin hlO) followed by tlavan 3-ols ((+)catechin) and anthocyanin compounds (pelargonidin-3-glucoside). Although fruits of wild F. vesca are mainly consumed in fresh, this study also proves the potentiality of their infusions as a source of bioactive molecules and properties.
Resumo:
A number of new triclosan-conjugated analogs bearing biodegradable ester linkage have been synthesized, characterized and evaluated for their antimalarial and antibacterial activities. Many of these compounds exhibit good inhibition against Plasmodium falciparum and Escherichia coli. Among them tertiary amine containing triclosan-conjugated prodrug (5) inhibited both P. falciparum (IC50; 0.62 μM) and E. coli (IC50; 0.26 μM) at lower concentrations as compared to triclosan. Owing to the presence of a cleavable ester moiety, these new prodrugs are hydrolyzed under physiological conditions and parent molecule, triclosan, is released. Further, introduction of tertiary/quaternary functionality increases their cellular uptake. These properties impart them with higher potency to their antimalarial as well as antibacterial activities. The best compound among them 5 shows close to four-fold enhanced activities against P. falciparum and E. coli cultures as compared to triclosan.
Resumo:
In this work, the biocompatibility and antibacterial activities of novel SnO2 nanowire coatings prepared by electron-beam (E-Beam) evaporation process at low temperatures were studied. The nanowire coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) methods. The results of in vitro cytotoxicity and cell proliferation assays suggested that the SnO2 nanowire coatings were nontoxic and promoted the proliferation of C2C12 and L929 cells (> 90% viability). Cellular activities, cell adhesion, and lactate dehydrogenase activities were consistent with the superior biocompatibility of the nanowire materials. Notably, the nanowire coating showed potent antibacterial activity against six different bacterial strains. The antibacterial activity of the SnO2 material was attributed to the photocatalytic nature of SnO2. The antibacterial activity and biocompatibility of the newly developed SnO2 nanowire coatings may enable their use as coating materials for biomedical implants.
Macroporous three-dimensional graphene oxide foams for dye adsorption and antibacterial applications
Resumo:
Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g(-1) of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity.
Resumo:
Biodegradable poly(L-lactide) (PLA) ultrafine fibers containing nanosilver particles were prepared via electrospinning. Morphology of the Ag/PLA fibers and distribution of the silver nanoparticles were characterized. The release of silver ions from the Ag/PLA fibers and their antibacterial activities were investigated. These fibers showed antibacterial activities (microorganism reduction) of 98.5% and 94.2% against Staphylococcus aureus and Escherichia coli, respectively, because of the presence of the silver nanoparticles.
Resumo:
TThe invention of novel antibiotics and other bioactive microbial metabolites continues to be an important aim in new drug discovery programmes. Actinomycetes have the potential to synthesize lots of diverse biologically vigorous secondary metabolites and in the last decades actinomycetes became the most productive source for antibiotics. Therefore in the present study we analyze the antibacterial activity of the actinomycetes isolated from grassland soil samples of Tropical Montane forest. A total of 33 actinomycete strains isolated were characterized and screened for antibacterial activities using well diffusion method against six specific pathogenic organisms. Identification of the isolates revealed that the majority of them were belonging to Streptomycetes followed by Nocardia, Micromonospora, Pseudonocardia, Streptosporangium, Nocardiopsis and Saccharomonospora. Among the 33 isolates, Gr1 strain showed antagonistic activity against all checked pathogens. Nine strains showed antibacaterial activity against Listeria, Vibrio cholera, Bacillus cereus, Staphylococcus aureus and Salmonella typhi and only 2 strains (Gr1and Gr25) showed antagonism to E. coli. The overall percentage of activity of actinomycetes isolates against each pathogenic bacterium was also calculated. While 63.63% of the actinomycetes were antagoinistic against Listeria, Vibrio cholerae, and Bacillus cereus, 60.6% of them were antagonistic to Staphylococcus aureus. Very few isolates (6.06%) showed antibacterial activity against E. coli. In general most of the actinomycetes isolates were antagonistic to grampositive bacteria such as Listeria, Bacillus and Staphylococcus than Gram-negative bacteria Vibrio cholerae, E. coli and Salmonella