133 resultados para anthelmintic
Resumo:
Recent surveys have identified anthelmintic effects from many bioactive substances particularly from condensed tannin (CT) sources. The aims of the present study were to investigate the potential anthelmintic effects of condensed tannins (CT) on Trichostrongylus colubriformis in experimentally infected sheep and the nutritional consequences on animals. Twenty helminth-free lambs were divided into five groups of four animals. Groups I to IV were artificially infected with 6,000 third stage larvae (L3) of T. colubriformis. Group I was the infected control and group V was the uninfected control. Twenty-eight days post-infection (p.i.) lambs from GII were supplemented with tanniniferous sorghum (350 g/animal/day, during seven days); GIII were drenched with Acacia mearnsii extract (15% CT) for just one day and GIV during two days (1.6 g extract/kg BW). At day 36 p.i., animals from infected group (GI to GIV) were slaughtered. Faecal egg counts (FEC) values present a reduction on GII when compared with GI at day 29 p.i. (P < 0.05) and between GIII and GI at day 35 and 36 p.i. (P < 0.05). The values of egg hatchability and number of L3 recovered from the faeces were not statistical analyzed (there was no duplicate data), however there was a considerable reduction between the values from treated and control group. The use of CT on diet did not cause significant difference on blood parameters, body-weight and carcass-weight (P > 0.05). No difference was related on total worm burden between treatments; however, GIV presented lower number of females than GI (P < 0.05). The use of CT could be a promising alternative source to reduce the pasture contamination and to control T. colubriformis infection in sheep.
Resumo:
Anthelmintics used for intestinal helminthiasis treatment are generally effective; however, their effectiveness in tissue parasitosis (i.e. visceral toxocariasis) is moderate. The aim of this study was to evaluate the in vitroactivity of lapachol, β-lapachone and phenazines in relation to the viability of Toxocara canis larvae. A concentration of 2 mg/mL (in duplicate) of the compounds was tested using microculture plates containing Toxocara canis larvae in an RPMI-1640 environment, incubated at 37 °C in 5% CO2 tension for 48 hours. In the 2 mg/mL concentration, four phenazines, lapachol and three of its derivatives presented a larvicide/larvistatic activity of 100%. Then, the minimum larvicide/larvistatic concentration (MLC) test was conducted. The compounds that presented the best results were nor-lapachol (MLC, 1 mg/mL), lapachol (MLC 0.5 mg/mL), β-lapachone, and β-C-allyl-lawsone (MLC, 0.25 mg/mL). The larvae exposed to the compounds, at best MLC with 100% in vitro activity larvicide, were inoculated into healthy BALB/c mice and were not capable of causing infection, confirming the larvicide potential in vitro of these compounds.
Resumo:
Fasciolosis is a food borne zoonosis, caused by the digenetic trematode Fasciola. Freshwater lymnaeid snails are the intermediate host of the trematodes. Chlorophyllin, a semi-synthetic derivative of chlorophyll and its formulations obtained from freeze dried cow urine (FCU) had their toxicity tested against redia and cercaria larvae of F. gigantica. The larvicidal activity of chlorophyllin and its formulations were found to depend on both, time and concentration used against the larvae. Toxicity of chlorophyllin + FCU (1:1 ratio) in sunlight against redia larva (8 h LC50: 0.03 mg/mL) was more pronounced than using just chlorophyllin (8 h LC50: 0.06 mg/mL). Toxicity of chlorophyllin + FCU in sunlight against redia (8 h LC50: 0.03 mg/mL) was higher than against cercaria (8 h LC50: 0.06 mg/mL). The larvicidal activity of chlorophyllin in sunlight (redia/cercaria larvae: 8 h LC50: 0.06 mg/mL) was more pronounced than under laboratory conditions (redia: 8 h LC50: 22.21 mg/mL/, cercaria 8 h LC50: 96.21 mg/mL). Toxicity of FCU against both larvae was lower than that of chlorophyllin and chlorophyllin + FCU. Chlorophyllin and its formulations + FCU were 357.4 to 1603.5 times more effective against redia/cercaria larvae in sunlight than under laboratory conditions. The present study has shown that chlorophyllin formulations may be used as potent larvicides against fasciolosis.
Resumo:
1300 ppm (1.3 g / L), water and ethanol extracts prepared from stems or roots of Picrolemma sprucei Hook. f. were lethal (85-90 % mortality) in vitro to Haemonchus contortus (Barber Pole Worm) larvae, a gastrointestinal nematode parasite found in domestic and wild ruminants. Neosergeolide and isobrucein B were isolated in 0.0083 and 0.0070 % yield from dry, ground P. sprucei stems (0.89 kg). Neosergeolide, isobrucein B and the anthelmintic drug standard levamisole all caused comparable mortality rates (68-77 %) in vitro to H. contortus at similar concentrations (81-86 ppm). The anthelmintic activity of P. sprucei infusions (teas), alcohol extracts, and neosergeolide and isobrucein B, has therefore been demonstrated for the first time.
Resumo:
Ascaris suum is one of the most prevalent nematode parasites in pigs and causes significant economic losses, and also serves as a good model for A. lumbricoides, the large roundworm of humans that is ubiquitous in developing countries and causes malnutrition, stunted growth and compromises immunity to other pathogens. New treatment options for Ascaris infections are urgently needed, to reduce reliance on the limited number of synthetic anthelmintic drugs. In areas where Ascaris infections are common, ethno-pharmacological practices such as treatment with natural plant extracts are still widely employed. However, scientific validation of these practices and identification of the active compounds are lacking, although observed effects are often ascribed to plant secondary metabolites such as tannins. Here, we extracted, purified and characterised a wide range of condensed tannins from diverse plant sources and investigated anthelmintic effects against A. suum in vitro. We show that condensed tannins can have potent, direct anthelmintic effects against A. suum, as evidenced by reduced migratory ability of newly hatched third-stage larvae and reduced motility and survival of fourth-stage larvae recovered from pigs. Transmission electron microscopy showed that CT caused significant damage to the cuticle and digestive tissues of the larvae. Furthermore, we provide evidence that the strength of the anthelmintic effect is related to the polymer size of the tannin molecule. Moreover, the identity of the monomeric structural units of tannin polymers may also have an influence as gallocatechin and epigallocatechin monomers exerted significant anthelmintic activity whereas catechin and epicatechin monomers did not. Therefore, our results clearly document direct anthelmintic effects of condensed tannins against Ascaris and encourage further in vivo investigation to determine optimal strategies for the use of these plant compounds for the prevention and/or treatment of ascariosis.
Resumo:
Background: Plant-derived condensed tannins (CT) show promise as a complementary option to treat gastrointestinal helminth infections, thus reducing reliance on synthetic anthelmintic drugs. Most studies on the anthelmintic effects of CT have been conducted on parasites of ruminant livestock. Oesophagostomum dentatum is an economically important parasite of pigs, as well as serving as a useful laboratory model of helminth parasites due to the ability to culture it in vitro for long periods through several life-cycle stages. Here, we investigated the anthelmintic effects of CT on multiple life-cycles stages of O. dentatum. Methods: Extracts and purified fractions were prepared from five plants containing CT and analysed by HPLC-MS. Anthelmintic activity was assessed at five different stages of the O. dentatum life cycle; the development of eggs to infective third-stage larvae (L3), the parasitic L3 stage, the moult from L3 to fourth-stage larvae (L4), the L4 stage and the adult stage. Results: Free-living larvae of O. dentatum were highly susceptible to all five plant extracts. In contrast, only two of the five extracts had activity against L3, as evidenced by migration inhibition assays, whilst three of the five extracts inhibited the moulting of L3 to L4. All five extracts reduced the motility of L4, and the motility of adult worms exposed to a CT-rich extract derived from hazelnut skins was strongly inhibited, with electron microscopy demonstrating direct damage to the worm cuticle and hypodermis. Purified CT fractions retained anthelmintic activity, and depletion of CT from extracts by pre-incubation in polyvinylpolypyrrolidone removed anthelmintic effects, strongly suggesting CT as the active molecules. Conclusions: These results suggest that CT may have promise as an alternative parasite control option for O. dentatum in pigs, particularly against adult stages. Moreover, our results demonstrate a varied susceptibility of different life-cycle stages of the same parasite to CT, which may offer an insight into the anthelmintic mechanisms of these commonly found plant compounds.
Resumo:
Plants containing condensed tannins (CTs) may hold promise as alternatives to synthetic anthelmintic (AH) drugs for controlling gastrointestinal nematodes (GINs). However, the structural features that contribute to the AH activities of CTs remain elusive. This study probed the relationships between CT structures and their AH activities. Eighteen plant resources were selected based on their diverse CT structures. From each plant resource, two CT fractions were isolated and their in vitro AH activities were measured with the Larval Exsheathment Inhibition Assay, which was applied to Haemonchus contortus and Trichostrongylus colubriformis. Calculation of mean EC50 values indicated that H. contortus was more susceptible than T colubriformis to the different fractions and that the F1 fractions were less efficient than the F2 ones, as indicated by the respective mean values for H.contortus F1 = 136.9 ± 74.1 µg/ml; and for H.contortus F2 = 108.1 ± 53.2 µg/ml and for T colubriformis F1 = 233 ± 54.3 µg/ml and F2=166 ± 39.9 µg/ml. The results showed that the AH activity against H. contortus was associated with the monomeric subunits that give rise to prodelphinidins (P < 0.05) and with CT polymer size (P < 0.10). However, for T. colubriformis AH activity was correlated only with prodelphinidins (P < 0.05). These results suggest that CTs have different modes of action against different parasite species.
Resumo:
Cinnamon (Cinnamomum verum) has been shown to have anti-inflammatory and antimicrobial properties, but effects on parasitic worms of the intestine have not been investigated. Here, extracts of cinnamon bark were shown to have potent in vitro anthelmintic properties against the swine nematode Ascaris suum. Analysis of the extract revealed high concentrations of proanthocyanidins (PAC) and trans-cinnamaldehyde (CA). The PAC were subjected to thiolysis and HPLC-MS analysis which demonstrated that they were exclusively procyanidins, had a mean degree of polymerization of 5.2 and 21% of their inter-flavan-3-ol links were A-type linkages. Purification of the PAC revealed that whilst they had activity against A. suum, most of the potency of the extract derived from CA. Trichuris suis and Oesophagostomum dentatum larvae were similarly susceptible to CA. To test whether CA could reduce A. suum infection in pigs in vivo, CA was administered daily in the diet or as a targeted, encapsulated dose. However, infection was not significantly reduced. It is proposed that the rapid absorption or metabolism of CA in vivo may prevent it from being present in sufficient concentrations in situ to exert efficacy. Therefore, further work should focus on whether formulation of CA can enhance its activity against internal parasites.
Resumo:
Plants containing condensed tannins (CT) may have potential to control gastrointestinal nematodes (GIN) of cattle. The aim was to investigate the anthelmintic activities of four flavan-3-ols, two galloyl derivatives and 14 purified CT fractions, and to define which structural features of CT determine the anti-parasitic effects against the main cattle nematodes. We used in vitro tests targeting L1 larvae (feeding inhibition assay) and adults (motility assay) of Ostertagia ostertagi and Cooperia oncophora. In the larval feeding inhibition assay, O. ostertagi L1 were significantly more susceptible to all CT fractions than C. oncophora L1. The mean degree of polymerization of CT (i.e. average size) was the most important structural parameter: large CT reduced larval feeding more than small CT. The flavan-3-ols of prodelphinidin (PD)-type tannins had a stronger negative influence on parasite activity than the stereochemistry, i.e. cis- vs trans-configurations, or the presence of a gallate group. In contrast, for C. oncophora high reductions in the motility of larvae and adult worms were strongly related with a higher percentage of PDs within the CT fractions while there was no effect of size. Overall, the size and the percentage of PDs within CT seemed to be the most important parameters that influence anti-parasitic activity.
Resumo:
Proanthocyanidins (PA) from shea (Vitellaria paradoxa) meal were investigated by thiolytic degradation with benzyl mercaptan and the reaction products were analysed by high performance liquid chromatography–mass spectrometry. These PA were galloylated (≈40%), contained only B-type linkages and had a high proportion of prodelphinidins (>70%). The mean degree of polymerisation was 8 (i.e. average molecular size was 2384 Da) and epigallocatechin gallate (EGCg) was the major flavan-3-ol subunit in PA. Shea meal also proved to be a potentially valuable source for extracting free flavan-3-ol-O-gallates, especially EGCg (575 mg/kg meal), which is known for its health and anti-parasitic benefits. Proanthocyanidins were isolated and tested for bioactivity against Ascaris suum, which is an important parasite of pigs. Migration and motility tests revealed that these PA have potent activity against this parasitic nematode.
Resumo:
Proanthocyanindins (PAs) from shea meal (SM), a by-product obtained after lipid extraction of the nuts, contained B-type linkages, had a high ratio of prodelphinidins (73%) and were galloylated (42%). The average polymer size was 8 flavan-3-ol subunits (≈2384 Daltons) and epigallocatechin gallate was the major subunit. Purified PA fractions from SM were tested in vitro for anthelmintic properties against gastrointestinal nematodes from ruminants (H. contortus and T. colubriformis) [1] by the larval exsheathment inhibition assay and from pigs (A. suum) by the larval migration inhibition assay. Results showed that PAs from SM have a potent anthelmintic activity against those parasites similar to white clover (Trifolium repens) flowers (WCF) [1, 2] (EC50 µg/mL; SM: 55.1, 16.5, 75.9; WCF: 37.4, 14.5, 110.1 for A. suum, H. contortus and T. colubriformis respectively). WCF PAs are constituted almost exclusively of prodelphinidin (PD) compared to SM (98% vs. 73%) but do not contained galloylated PAs. Studies [1, 2] have shown that anthelmintic activity of PAs was mainly associated with their PD ratio but our current results suggest that galloylation can be a major factor to anthelmintic activity and SM as a potential nutraceutical anthelmintic feed for controlling parasitic nematodes.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)