971 resultados para anterior cingulate gyrus
Resumo:
This study forms part of an ongoing investigation of pyramidal cell structure in the cingulate cortex of primates. Recently we have demonstrated that layer III pyramidal cells in the anterior cingulate gyrus are considerably larger, more branched and more spinous than those in the posterior cingulate gyrus (areas 24 and 23, respectively) in the macaque and vervet monkeys. Moreover, the extent of the interareal difference in specialization in pyramidal cell structure differed between the two species. These data suggest that pyramidal cell circuitry may have evolved differently in these closely related species. Presently there are too few data to speculate on what is selecting for this specialization in structure. Here we extend the basis for comparison by studying pyramidal cell structure in cingulate gyrus of the Chacma baboon (Papio ursinus). Methodology used here is the same as that for our previous studies: intracellular injection of Lucifer Yellow in flat-mounted cortical slices. We found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). Moreover, the complexity in pyramidal cell structure in both the anterior and posterior cingulate gyrus of the baboon differed to that in the corresponding regions in either the macaque or vervet monkeys. (C) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The pyramidal cell phenotype varies quite dramatically in structure among different cortical areas in the primate brain. Comparative studies in visual cortex, in particular, but also in sensorimotor and prefrontal cortex, reveal systematic trends for pyramidal cell specialization in functionally related cortical areas. Moreover, there are systematic differences in the extent of these trends between different primate species. Recently we demonstrated differences in pyramidal cell structure in the cingulate cortex of the macaque monkey; however, in the absence of other comparative data it remains unknown as to whether the neuronal phenotype differs in cingulate cortex between species. Here we extend the basis for comparison by studying the structure of the basal dendritic trees of layer III pyramidal cells in the posterior and anterior cingulate gyrus of the vervet monkey (Brodmann's areas 23 and 24, respectively). Cells were injected with Lucifer Yellow in flat-mounted cortical slices, and processed for a light-stable DAB reaction product. Size, branching pattern, and spine density of basal dendritic arbors were determined, and somal areas measured. As in the macaque monkey, we found that pyramidal cells in anterior cingulate gyrus (area 24) were more branched and more spinous than those in posterior cingulate gyrus (area 23). In addition, the extent of the difference in pyramidal cell structure between these two cortical regions was less in the vervet monkey than in the macaque monkey.
Resumo:
To explore possible morphological abnormalities in the dorsal and subgenual parts of anterior cingulate cortex in mood disorders and schizophrenia, we performed a quantitative postmortem study of 44 schizophrenic patients, 21 patients with sporadic bipolar disorder, 20 patients with sporadic major depression, and 55 age- and sex-matched control cases. All individuals were drug naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Neuron densities and size were estimated on cresyl violet-stained sections using a stereological counting approach. The distribution and density of microtubule-associated (MAP2, MAP1b) and tau proteins were assessed by immunocytochemistry and quantitative immunodot assay. Mean total and laminar cortical thicknesses as well as mean pyramidal neuron size were significantly decreased in the dorsal and subgenual parts of areas 24 (24sg) in schizophrenic cases. Patients with bipolar disorder showed a substantial decrease in laminar thickness and neuron densities in layers III, V, and VI of the subgenual part of area 24, whereas patients with major depression were comparable to controls. Immunodot assay showed a significant decrease of both MAP2 and MAP1b proteins in bipolar patients but not in patients with schizophrenia and major depression. The neuroanatomical and functional significance of these findings are discussed in the light of current hypotheses regarding the role of areas 24 and 24sg in schizophrenia and bipolar disorder.
Resumo:
Prior experience with the elevated plus maze (EPM) increases the avoidance of rodents to the open arms and impairs the anxiolytic-like effects of benzodiazepines on the traditional behaviors evaluated upon re-exposure to the maze, a phenomenon known as one-trial tolerance. Risk assessment behaviors are also sensitive to benzodiazepines. During re-exposure to the maze, these behaviors reinstate the information-processing initiated during the first experience, and the detection of danger generates stronger open-arm avoidance. The present study investigated whether the benzodiazepine midazolam alters risk assessment behaviors and Fos protein distribution associated with test and retest sessions in the EPM. Naive or maze-experienced Wistar rats received either saline or midazolam (0.5 mg/kg i.p.) and were subjected to the EPM. Midazolam caused the usual effects on exploratory behavior, increasing exploratory activity of naive rats in the open arms and producing no effects on these conventional measures in rats re-exposed to the maze. Risk assessment behaviors, however, were sensitive to the benzodiazepine during both sessions, indicating anxiolytic-like effects of the drug in both conditions. Fos immunohistochemistry showed that midazolam injections were associated with a distinct pattern of action when administered before the test or retest session, and the anterior cingulate cortex, area 1 (Cg1), was the only structure targeted by the benzodiazepine in both situations. Bilateral infusions of midazolam into the Cg1 replicated the behavioral effects of the drug injected systemically, suggesting that this area is critically involved in the anxiolytic-like effects of benzodiazepines, although the behavioral strategy adopted by the animals appears to depend on the previous knowledge of the threatening environment. (C) 2009 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Background: In view of conflicting neuroimaging results regarding autonomic-specific activity within the anterior cingulate cortex (ACC), we investigated autonomic responses to direct brain stimulation during sterecitactic limbic surgery. Methods: Skin conductance activity and accelerative heart rate responses to multi-voltage stimulation of the ACC (n = 7) and paralimbic subcauclate (n = 5) regions were recorded during bilateral anterior cingulotomy and bilateral subcauclate tractotomy (in patients that had previously received an adequate lesion in the ACC), respectively. Results: Stimulations in both groups were accompanied by increased autonomic arousal. Skin conductance activity was significantly increased during ACC stimulations compared with paralimbic targets at 2 V (2.34 +/- .68 [score in microSiemens +/- SE] vs. .34 +/- .09, p = .013) and 3 V (3.52 +/- .86 vs. 1.12 +/- .37, p = .036), exhibiting a strong ""voltage-response"" relationship between stimulus magnitude and response amplitude (difference from 1 to 3 V = 1.15 +/- .90 vs. 3.52 +/- .86, p = .041). Heart rate response was less indicative of between-group differences. Conclusions: This is the first study of its kind aiming at seeking novel insights into the mechanisms responsible for central autonomic modulation. It supports a concept that interregional interactions account for the coordination of autonomic arousal.
Resumo:
Objective: Impulsivity is associated with the clinical outcome and likelihood of risky behaviors among bipolar disorder (BD) patients. Our previous study showed an inverse relationship between impulsivity and orbitofrontal cortex (OFC) volume in healthy subjects. We hypothesized that BD patients would show an inverse relationship between impulsivity and volumes of the OFC, anterior cingulate cortex (ACC), medial prefrontal cortex, and amygdala, which have been implicated in the pathophysiology of BD. Methods: Sixty-three BD patients were studied (mean +/- SD age = 38.2 +/- 11.5 years; 79% female). The Barratt Impulsiveness Scale (BIS), version 11A, was used to assess trait impulsivity. Images were processed using SPM2 and an optimized voxel-based morphometry protocol. We examined the correlations between BIS scores and the gray matter (GM) and white matter (WM) volumes of the prespecified regions. Results: Left rostral ACC GM volume was inversely correlated with the BIS total score (t = 3.95, p(corrected) = 0.003) and the BIS motor score (t = 5.22, p(corrected) < 0.001). In contrast to our hypothesis, OFC volumes were not significantly associated with impulsivity in BD. No WM volume of any structure was significantly correlated with impulsivity. No statistical association between any clinical variable and the rostral ACC GM volumes reached significance. Conclusions: Based on our previous findings and the current results, impulsivity may have a different neural representation in BD and healthy subjects, and the ACC may be involved in the pathophysiology of abnormal impulsivity regulation in BD patients.
Resumo:
Tonic immobility (TI) is an innate defensive behaviour elicited by physical restriction and Postural inversion, and is characterised by a profound and temporary state of akinesis. Our previous studies demonstrated that glutamatergic stimulation of the dorsomedial/dorsolateral Portion of periaqueductal gray matter (dPAG) decreases the duration of TI in guinea pigs (Cavia porcellus). Furthermore, evidence suggests that the anterior cingulate cortex (ACC) constitutes an important Source of glutamate for the dPAG. Hence, in the current study, we investigated the effects of microinjection of the excitatory amino acid (EAA) agonist DL-homocysteic acid (DLH) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 into the ACC on the duration of TI in guinea pigs. We also assessed the effect of the NMDA receptor antagonist (MK-801) into the dorsal periaqueductal gray matter (dPAG) prior to DLH microinjection into the ACC on the TI duration in the guinea pig. Our results demonstrated that DLH microinjections into the ACC decreased the duration of TI. This effect was blocked by previous MK-801 microinjections into the ACC or into the dPAG. The MK-801 microinjections alone did not influence TI duration. These results provide the new insight that EAAs in the ACC can decrease the duration of TI. The mechanism seems to be dependent on the NMDA receptors present in the ACC and in the dPAG. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2012
Resumo:
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Resumo:
Background. Transient global amnesia (TGA) is a syndrome of sudden, unexplained isolated short-term memory loss. In the majority of TGA cases, no causes can be identified and neuroimaging, CSF studies and EEG are usually normal. We present a patient with TGA associated with a small acute infarct at the cingulate gyrus. Case Report. The patient, a 62 year-old man, developed two episodes of TGA. He had hypertension and hypercholesterolemia. He was found to have an acute ischemic stroke of small size (15 mm of maximal diameter) at the right cerebral cingulate gyrus diagnosed on brain magnetic resonance imaging. No lesions involving other limbic system structures such as thalamus, fornix, corpus callosum, or hippocampal structures were seen. The remainder of the examination was normal. Conclusion. Unilateral ischemic lesions of limbic system structures may result in TGA. We must bear in mind that TGA can be an associated clinical disorder of cingulate gyrus infarct.
Resumo:
AIMS: Previous neuroimaging reports described morphological and functional abnormalities in anterior cingulate cortex (ACC) in schizophrenia and mood disorders. In earlier neuropathological studies, microvascular changes that could affect brain perfusion in these disorders have rarely been studied. Here, we analysed morphological parameters of capillaries in this area in elderly cases affected by these psychiatric disorders. METHODS: We analysed microvessel diameters in the dorsal and subgenual parts of the ACC in eight patients with schizophrenia, 10 patients with sporadic bipolar disorder, eight patients with sporadic major depression, and seven age- and gender-matched control cases on sections stained with modified Gallyas silver impregnation using a stereological counting approach. All individuals were drug-naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Statistical analysis included Kruskal-Wallis group comparisons with Bonferroni correction as well as multivariate regression models. RESULTS: Mean capillary diameter was significantly decreased in the dorsal and subgenual parts of areas 24 in bipolar and unipolar depression cases, both in layers III and V, whereas schizophrenia patients were comparable with controls. These differences persisted when controlling for age, local neuronal densities, and cortical thickness. In addition, cortical thickness was significantly smaller in both layers in schizophrenia patients. CONCLUSIONS: Our findings indicate that capillary diameters in bipolar and unipolar depression but not in schizophrenia are reduced in ACC. The significance of these findings is discussed in the light of the cytoarchitecture, brain metabolism and perfusion changes observed in ACC in mood disorders.
Resumo:
Dopamine release in the prefrontal cortex plays a critical role in cognitive function such as working memory, attention and planning. Dopamine exerts complex modulation on excitability of pyramidal neurons and interneurons, and regulates excitatory and inhibitory synaptic transmission. Because of the complexity of this modulation, it is difficult to fully comprehend the effect of dopamine on neuronal network activity. In this study, we investigated the effect of dopamine on local high-frequency oscillatory neuronal activity (in β band) in slices of the mouse anterior cingulate cortex (ACC). We found that dopamine enhanced the power of these oscillations induced by kainate and carbachol, but did not affect their peak frequency. Activation of D2R and in a lesser degree D1R increased the oscillation power, while activation of D4R had no effect. These high-frequency oscillations in the ACC relied on both phasic inhibitory and excitatory transmission and functional gap junctions. Thus, dopamine released in the ACC promotes high-frequency synchronized local cortical activity which is known to favor information transfer, fast selection and binding of distributed neuronal responses. Finally, the power of these oscillations was significantly enhanced after degradation of the perineuronal nets (PNNs) enwrapping most parvalbumin interneurons. This study provides new insights for a better understanding of the abnormal prefrontal gamma activity in schizophrenia (SZ) patients who display prefrontal anomalies of both the dopaminergic system and the PNNs.
Resumo:
The role of anterior cingulate cortex (ACC) in attention is a matter of debate. One hypothesis suggests that its role is to monitor response-level conflict, but explicit evidence is somewhat lacking. In this study, the activation of ACC was compared in (a) color and number standard Stroop tasks in which response preparation and interference shared modality (response-level conflict) and (b) color and number matching Stroop tasks in which response preparation and interference did not share modality (non-response-level conflict). In the congruent conditions, there was no effect of task type. In the interference conditions, anterior cingulate activity in the matching tasks was less than that in the standard tasks. These results support the hypothesis that ACC specifically mediates generalized modality-independent selection processes invoked by response competition.