930 resultados para antennal lobe


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In insects the antennal lobes (AL) constitute the brain deutocerebrum. In bees they consist of two neuropil regions, each associated with one antenna, delimited by a layer of glial cells and somata of neurons. The neuropil is organized in distinct globular structures of dense synaptic axons coming from the olfactory organs of the antennae, known as glomeruli. In Apis mellifera, as in other eusocial species of bees, queens, workers, and drones perform different functions in the colony and consequently the organs associated with these functions undergo a differential development. In this paper we analyzed the structure and size of the differentiating AL of queens, workers, and drones during metamorphosis using light microscopy. During metamorphosis the neuropil enlarge and differentiates into concentric structures known as glomeruli. The results showed size, structural and temporal differences in the glomeruli development among the classes of individuals of the colony. The neuropil differentiation starts early and is faster in drones and newly emerged worker is the colony individual class with greater neuropil area in AL. These results are discussed taking in account the functions of the individuals in the colony. (C) Koninklijke Brill NV, Leiden, 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A difference in female pheromone production and male behavioral response has previously been found in two populations of the turnip moth, Agrotis segetum, originating from Sweden and Zimbabwe, respectively. In this study, we investigated the pheromone response of antennal lobe interneurons of males of the two populations by intracellular recordings, stimulating with single pheromone components and various inter- and intra-populational pheromone blends. Three major physiological types of antennal lobe neurons were established in the two populations according to their responses to different stimuli. One type responded broadly to almost all the stimuli tested. The second type responded selectively to some of the single components and blends. The third type did not respond to any single components but did respond to certain blends. Furthermore, some neurons of the second and third type recognized strain specific differences in ratios between pheromone components. Both projection neurons and local interneurons were found among these three types. Two pheromone responding bilateral projection neurons are reported for the first time in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Evolutionary theory predicts that herbivorous insects should lay eggs on plants in a way that reflects the suitability of each plant species for larval development. Empirical studies, however, often fail to find any relationship between an adult insect’s choice of host–plant and offspring fitness, and in such cases, it is generally assumed that other ‘missing’ factors (e.g. predation, host–plant abundance, learning and adult feeding sites) must be contributing to overall host suitability. Here, I consider an alternative theory – that a fitness cost inherent in the olfactory mechanism could constrain the evolution of insect host selection. I begin by reviewing current knowledge of odour processing in the insect antennal lobe with the aid of a simple schematic: the aim being to explain the workings of this mechanism to scientists who do not have prior knowledge in this field. I then use the schematic to explore how an insect’s perception of host and non-host odours is governed by a set of processing rules, or algorithm. Under the assumptions of this mechanistic view, the perception of every plant odour is interrelated, and seemingly bad host choices can still arise as part of an overall adaptive behavioural strategy. I discuss how an understanding of mechanism can improve the interpretation of theoretical and empirical studies in insect behaviour and evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent work established the spread of interglomerular excitation in the Drosophila antennal lobe. Two papers in this issue of Neuron, by Huang et al. and Yaksi and Wilson, show that cholinergic krasavietz local interneurons are a major substrate for this spread of excitation, predominantly via electrical coupling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural odors are usually mixtures; yet, humans and animals can experience them as unitary percepts. Olfaction also enables stimulus categorization and generalization. We studied how these computations are performed with the responses of 168 locust antennal lobe projection neurons (PNs) to varying mixtures of two monomolecular odors, and of 174 PNs and 209 mushroom body Kenyon cells (KCs) to mixtures of up to eight monomolecular odors. Single-PN responses showed strong hypoadditivity and population trajectories clustered by odor concentration and mixture similarity. KC responses were much sparser on average than those of PNs and often signaled the presence of single components in mixtures. Linear classifiers could read out the responses of both populations in single time bins to perform odor identification, categorization, and generalization. Our results suggest that odor representations in the mushroom body may result from competing optimization constraints to facilitate memorization (sparseness) while enabling identification, classification, and generalization

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell-cycle dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development [1]. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell cycle-dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have isolated a new Drosophila mutant, satori (sat), the males of which do not court or copulate with female flies. The sat mutation comaps with fruitless (fru) at 91B and does not rescue the bisexual phenotype of fru, indicating that sat is allelic to fru (fru(sat)). The fru(sat) adult males lack a male-specific muscle, the muscle of Lawrence, as do adult males with other fru alleles. Molecular cloning and analyses of the genomic and complementary DNAs indicated that transcription of the fru locus yields several different transcripts. The sequence of fru cDNA clones revealed a long open reading frame that potentially encodes a putative transcription regulator with a BTB domain and two zinc finger motifs. In the 5' noncoding region, three putative transformer binding sites were identified in the female transcript but not in male transcripts. The fru gene is expressed in a population of brain cells, including those in the antennal lobe, that have been suggested to be involved in determination of male sexual orientation. We suggest that fru functions downstream of tra in the sex-determination cascade in some neural cells and that inappropriate sexual development of these cells in the fru mutants results in altered sexual orientation of the fly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Optical Projection Tomography (OPT) is a microscopic technique that generates three dimensional images from whole mount samples the size of which exceeds the maximum focal depth of confocal laser scanning microscopes. As an advancement of conventional emission-OPT, Scanning Laser Optical Tomography (SLOTy) allows simultaneous detection of fluorescence and absorbance with high sensitivity. In the present study, we employ SLOTy in a paradigm of brain plasticity in an insect model system. Methodology: We visualize and quantify volumetric changes in sensory information procession centers in the adult locust, Locusta migratoria. Olfactory receptor neurons, which project from the antenna into the brain, are axotomized by crushing the antennal nerve or ablating the entire antenna. We follow the resulting degeneration and regeneration in the olfactory centers (antennal lobes and mushroom bodies) by measuring their size in reconstructed SLOTy images with respect to the untreated control side. Within three weeks post treatment antennal lobes with ablated antennae lose as much as 60% of their initial volume. In contrast, antennal lobes with crushed antennal nerves initially shrink as well, but regain size back to normal within three weeks. The combined application of transmission-and fluorescence projections of Neurobiotin labeled axotomized fibers confirms that recovery of normal size is restored by regenerated afferents. Remarkably, SLOTy images reveal that degeneration of olfactory receptor axons has a trans-synaptic effect on second order brain centers and leads to size reduction of the mushroom body calyx. Conclusions: This study demonstrates that SLOTy is a suitable method for rapid screening of volumetric plasticity in insect brains and suggests its application also to vertebrate preparations.