9 resultados para anomer
Resumo:
Methyl tetra-O-acetyl-β-d-glucopyranuronate (1) and methyl tetra-O-acetyl-α-d-glucopyranuronate (3) were isolated as crystalline solids and their crystal structures were obtained. That of the β anomer (1) was the same as that reported by Root et al., while anomer (3) was found to crystallise in the orthorhombic space group P212121 with two independent molecules in the asymmetric unit. No other crystal forms were found for either compound upon recrystallisation from a range of solvents. The α anomer (3) was found to be an impurity in initially precipitated batches of β-anomer (1) in quantities <3%; however, it was possible to remove the α impurity either by recrystallisation or by efficient washing, i.e. the α anomer is not incorporated inside the β anomer crystals. The β anomer (1) was found to grow as prisms or needles elongated in the a crystallographic direction in the absence of the α impurity, while the presence of the α anomer (3) enhanced this elongation.
Resumo:
2-Dansylamino-2-deoxy-D-galactose (GalNDns) has been shown to bind to peanut (Arachis hypogaea) agglutinin (PNA) in a saccharide-specific manner. This binding was accompanied by a five-fold increase in the fluorescence of GalNDns. The interaction was characterized by an association constant of 0.15 mM at 15° and ΔH and ΔS values of -57.04 kJ·mol-1 and -118.1 J·mol-1.K-1, respectively. Binding of a variety of other mono-, di- and oligo-saccharides to PNA, studied by monitoring their ability to dissociate the PNA-GalNDns complex, revealed that PNA interacts with several T-antigen-related structures, such as β-d-Galp-(1→3)-D-GalNAc, β-D-Galp-(1→3)-α-D-GalpNAcOMe, and β-D-Galp-(1→3)-α-D-GalpNAc(1→3)-Ser, as well as the asialo-G(M1) tetrasaccharide, with comparable affinity, thus showing that this lectin does not discriminate between saccharides in which the penultimate sugar of the β-D-Galp-(1→3)-D-GalNAc unit is the α or β anomer, in contrast to jacalin (Artocarpus integrifolia agglutinin), another anti T-lectin which preferentially binds to β-D-Galp-(1→3)-α-D-GalNAc and does not recognize β-D-Galp-(1→3)-β-D-GalNAc or the related asialo-G(M1) oligosaccharide. These studies also indicated that, in the extended combining region of PNA which accommodates a disaccharide, the primary subsite (subsite A) is highly specific for D-galactose, whereas the secondary subsite (subsite B) is less specific and can accommodate various structures, such as D-galactose, 2-acetamido-2-deoxy-D-galactose, D-glucose, and 2-acetamido-2-deoxy-D-glucose.
Resumo:
Three new hydroxymethyl-linked non-natural disaccharide analogues, containing an additional methylene group in between the glycosidic linkage, were synthesized by utilizing 4-C-hydroxymethyl-alpha-D-glucopyranoside as the glycosyl donor. A kinetic study was undertaken to assess the hydrolytic stabilities of these new disaccharide analogues toward acid-catalyzed hydrolysis, at 60 degrees C and 70 degrees C. The studies showed that the disaccharide analogues were stable, by an order of magnitude, than naturally-occurring disaccharides, such as, cellobiose, lactose, and maltose. The first order rate constants were lower than that of methyl glycosides and the trend of hydrolysis rate constants followed that of naturally-occurring disaccharides. alpha-Anomer showed faster hydrolysis than the beta-anomer and the presence of axial hydroxyl group also led to faster hydrolysis among the disaccharide analogues. Energy minimized structures, derived through molecular modeling, showed that dihedral angles around the glycosidic bond in disaccharide analogues were nearly similar to that of naturally-occurring disaccharides. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A method to convert 2-hydroxy glycol ester to the corresponding corresponding 2-deoxy-2-C-alkyl glycol in a facile manner, through key reactions including (i) C-allylation at C-1, (ii) Wittig reaction, and (iii) Cope rearrangement of a 1,5-diene derivative, is reported. The alpha-anomer of the 1,5-diene derivative underwent Cope rearrangement to afford 2-deoxy-2-C-glycal derivative, whereas the beta-anomer was found to be unreactive. Employing this sequence, was transformed to 3,4,6-tri-O-benzyl-2-deoxy-2-C-alkyl-1,5-anhydro-D-arabino-hex-1-enitol. 2-Deoxy-2-C-alkyl glycol derivative is a suitable glycosyl donor to prepare 2-deoxy-2-C-alkyl glycosides, mediated through haloglycosylation and a subsequent dehalogenation. A number of 2-deoxy-2-C-alkyl glycosides, with both glycosyl and nonglycosyl moieties at the reducing end, are thus prepared from the glycol.
Resumo:
This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.
Resumo:
Nous avons démontré l’utilité du groupement protecteur tert-butylsulfonyle (N-Bus) pour la chimie des acides aminés et des peptides. Celui-ci est préparé en deux étapes, impliquant la réaction d’une amine avec le chlorure de tert-butylsulfinyle, suivie par l’oxydation par du m-CPBA, pour obtenir les tert-butylsulfonamides correspondants avec d’excellents rendements. Le groupement N-Bus peut être clivé par traitement avec 0.1 N TfOH/DCM/anisole à 0oC en 10h pour régénérer le sel d’ammonium. Une variété d’acides aminés N-Bus protégés ainsi que d’autres aminoacides peuvent alors être utilisés pour préparer divers dipeptides et tripeptides. A l’exception du groupe N-Fmoc, les conditions de déprotection du groupe N-Bus clivent également les groupements N-Boc, N-Cbz et O-Bn. Une déprotection sélective et orthogonale des groupes N-Boc, N-Cbz, N-Fmoc et O-Bn est également possible en présence du groupe protecteur N-Bus. Le nouvel acide aminé non-naturel (3R, 2R) 3–méthyl-D-leucine (β-Me-Leu) et son régioisomère 2-méthyle ont été synthétisés par ouverture d’une N-Ts aziridine en présence d’un excès de LiMe2Cu. Chacun des régioisomères du mélange (1:1,2) a été converti en la méthylleucine correspondante, puis couplé à l’acide D-phényllactique puis au motif 2-carboxyperhydroindole 4-amidinobenzamide en présence de DEPBT. Des élaborations ultérieures ont conduit à des analogues peptidiques non-naturels d’aeruginosines telles que la chlorodysinosine A. Les deux analogues ont ensuite été évalués pour leur activité inhibitrice de la thrombine et la trypsine. La présumée aeruginosine 3-sulfate 205B et son anomère β ont été synthétisés avec succès à partir de 5 sous-unités : la 3-chloroleucine, l’acide D-phényllactique, le D-xylose, le 2-carboxy-6-hydroxyoctahydroindole et l’agmatine. La comparaison des données RMN 1H et 13C reportées avec celles obtenues avec l’aeruginosine synthétique 205B révèle une différence majeure pour la position du groupe présumé 3'-sulfate sur l’unité D-xylopyranosyle. Nous avons alors synthétisés les dérivés méthyl-α-D-xylopyranosides avec un groupement sulfate à chacune des positions hydroxyles, afin de démontrer sans ambiguïté la présence du sulfate en position C-4' par comparaison des données spectroscopiques RMN 1H et 13C. La structure de l’aeruginosine 205B a alors été révisée. Une des étapes-clés de cette synthèse consiste en la formation du glycoside avec le groupe hydroxyle en C-6 orienté en axial sur la sous-unité Choi. Le 2-thiopyridylcarbonate s’est avéré une méthode efficace pour l’activation anomérique. Le traitement par AgOTf et la tétraméthylurée en solution dans un mélange éther-DCM permet d’obtenir l’anomère α désiré, qui peut alors être aisément séparé de l’anomère β par chromatographie
Resumo:
A new 2,3,4,6-tetra-O-(3-nitropropanoyl)-O-β-D-glucopyranoside anomer was isolated from the roots of Heteropteris aphrodisiaca and characterized by spectroscopic methods. Activity against Staphylococcus aureus, Bacillus subtilis, Candida albicans, C. parapsilosis, C. krusei, and C. tropicalis was demonstrated.
Resumo:
Ziel der Arbeit war es, Sialyl-LewisX-Mimetika auf Basis ortho-C-glycosylierter Phenole als Inhibitoren für die Selektin-Ligand-Wechselwirkungen zu synthetisieren. Dazu wurde zunächst die Stereoselektivität der ortho-C-Mannosylierung untersucht. Dabei wurde gezeigt, dass bei der Umsetzung von Phenolen mit dem benzylgeschützten Mannosyl-trichloracetimidat in Gegenwart von TMSOTf selektiv das β-C-Mannosid erhalten wurde. Gleichzeitig konnte anhand der NMR-spektroskopischen Untersuchungen nachgewiesen werden, dass die in der Literatur beschriebenen α-C-Mannoside von Phenolen tatsächlich β-konfiguriert sind. Wenn Naphthole als Glycosylakzeptoren verwendet wurden, konnten durch Modifikation des Promotors auch die für die Synthese der Mimetika benötigten α-C-Mannoside erhalten werden, wobei ZnCl2 als Promotor die besten Ergebnisse lieferte. Allerdings zeigten die synthetisierten α-C-Mannoside und α-C-Galactoside eine Inversion des Pyranoseringes und lagen in der ungewöhnlichen 1C4-Konformation vor.rnAnschließend konnte auf diese Weise das durch Docking-Studien gefundene Mimetikum (2S)-3-Cyclohexyl-2-[7-hydroxy-8-(α-D-mannosyl)naphthalin-2-yloxy]propionsäure syntheti-siert werden. Es besaß jedoch in Zelladhäsionstests keine ausreichende Aktivität bei der Inhibierung der Selektin-Ligand-Wechselwirkung. Bei den ursprünglichen Dockingstudien war allerdings von der gewohnten 4C1-Konformation ausgegangen worden. Spätere NMR-Experimente und DFT-Berechnungen zeigten, dass das Mimetikum tatsächlich in der 1C4-Konformation vorlag und es deshalb nicht aktiv war. Die synthetisierten Stereo- und Regioisomere zeigten in Zelladhäsionstests ebenfalls keine Aktivität.rnVersuche, die α-1-C-Mannosylnaphthole zu den benötigten 1-C-2-O-Diglycosyl-naphthalinen umzusetzen waren nicht erfolgreich, da die phenolische OH-Gruppe sterisch zu sehr abgeschirmt war, um unter milden Reaktionsbedingungen glycosyliert zu werden, bzw. die α-1-C-Mannosylnaphthaline unter drastischeren Reaktionsbedingungen nicht stabil waren. Daher wurde 1-(2′,3′,4′,6′-Tetra-O-benzyl-β-D-galactopyranosyl)-2-naphthol mit 2,3,4,6-Tetra-O-acetyl-α-D-mannopyranosyl-trichloracetimidat in Gegenwart von TMSOTf zum ersten synthetischen 1-C-2-O-Diglycosyl-phenol umgesetzt. Nach Abspaltung der Schutzgruppen sollte das erhaltene 1-Galactosyl-2-O-mannosyl-naphthalin enzymatisch zum Sialyl-LewisX-Mimetikum verlängert werden. Es wurde vom Enzym jedoch nicht als Substrat erkannt. Versuche zur chemischen Anbindung des Säurebausteins stehen noch aus.rn
Resumo:
The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^