1000 resultados para animal schistosomiasis
Resumo:
The molluscicidal effect of nicotinanilide was evaluated and compared with niclosamide (2',5-dichloro-4'-nitrosalicylanilide, ethanolamide salt) against different stages of the freshwater snail Lymnaea luteola i.e., eggs, immature, young mature, and adults. Calculated values of lethal concentrations (LC50 and LC90 ) showed that both nicotinanilide and niclosamide as toxic against eggs, immature, and adults. The young mature stage of the snails was comparatively more tolerant to both molluscicides than the other stages. The toxicity of the intermediate compounds of nicotinanilide against the young mature stage of the snails showed them as ineffective. The mortality pattern of the snails exposed to LC90 concentration of these molluscicides showed niclosamide to kill faster (within 8 to 9 h) than nicotinanilide (26 to 28 h). In view of the above studies it may be concluded that both molluscicides are toxic against all the stages of the L. luteola snails.
Resumo:
The Centre de Recherche sur les Méningites et les Schistosomes (CERMES) is a research institute depending on the Organisation de Coordination et de Coopération pour la lutte contre les Grandes Endémies - a West African Organization for Public Health - devoted to the studies on schistosomiasis and meningitis. The staff includes 32 persons with 11 scientists and one financial officer. The activities of the CERMES involving schistosomiasis concern three research units: (a) ecology of human and animal schistosomiasis transmission; the CERMES defined the different patterns of schistosomiasis transmission in Niger (involving African dry savana); in this field, we have shown, (i) the existence of important variability in conditions of transmission of S. haematobium and, (ii) natural hybridization between parasitic species of the ruminants (S. bovis and S. curassoni) and genetic interaction between human and animal parasites; (b) definition of morbidity indicators usable for rapid assessment methods, for appraisal of the severity of the disease and for the evaluation of the efficiency of control methods; we have established the correlation between ultrasonographic data and some cheap and simple field indicators; (c) immune response and protective immunity induced by recombinant glutathion S-transferase (Sm28, Sb28 and Sh28) in homologous and heterologous animal models including goats, sheep and non human primates (Erythrocebus patas). In Niger, we participate in all control programs against schistosomiasis to define control strategies, to supervise operations and to participate in their evaluation with external experts. International collaborations constitute a frame including four laboratories in Africa and six laboratories in developed countries (Europe and USA)
Resumo:
In order to evaluate Callithrix jacchus as an animal model for mansoni schistosomiasis, a group of 10 male animals were once percutaneously exposed to 250 cercariae of the Schistosoma mansoni SLM (São Lourenço da Mata) strain. Animals were periodically bled for measuring serum level of enzymes and proteins and for blood cell counting. When comparing pre-infection to post-infection values, a significant increase was found for alkaline phosphatase at 15 to 120 days p.i., differential counts of eosinophil at 45 and 60 days, and total protein and global eosinophil counts at 120 days. No Schistosoma mansoni eggs were found in stools. Adult worms of small size were recovered from five animals. At day 120, the number of Schistosoma mansoni eggs/g of tissue was 0-289.7 (liver), 0-30.1 (large intestine) and 0-171.4 (small intestine). These findings lead us to classify Callithrix jacchus as a non-permissive host to the SLM strain of Schistosoma mansoni.
Resumo:
In this review the authors analyze the effector and regulatory mechanisms in the immune response to schistosomiasis. To study these mechanisms two animal models were used, mouse and rat. The mouse totaly permissive host like human, show prominent-T cell control in the acquisition of resistance. But other mechanisms like antibody mediated cytotoxity (ADCC) involving eosinophils and IgG antibodies described in humans, are observed in rats. Also in this animal, it is observed specific IgE antibody high production and blood and tisssue eosinophilia. Using the rat model and schistosomula as target, some ADCC features have emerged: the cellular population involved are bone marrow derived inflammatory cell (mononuclear phagocytes, eosinophils and platelets), interacting with IgE through IgE Fc receptors. Immunization has been attempted using the recombinant protein Sm28/GST. Protection has been observed in rodents with significant decrease of parasite fecundity and egg viability affecting the number, size and volume of liver egg granulomas. The association of praziquantel and immunization with with Sm28/GST increases the resistance to infection and decreases egg viability. The authors suggest the possibility of the stablishment of a future vaccine against Schistosoma mansoni.
Resumo:
Schistosomiasis is a chronic and debilitating parasitic disease that affects over 200 million people throughout the world and causes about 500,000 deaths annually. Two specific characteristics of schistosome infection are of primordial importance to the development of a vaccine: schistosomes do not multiply within the tissues of their definitive hosts (unlike protozoan parasites) and a partial non-sterilizing immunity can have a marked effect on the incidence of pathology and on disease transmission. Since viable eggs are the cause of disease pathology, a reduction in worm fecundity whether or not accompanied by a reduction in parasite burden is a sufficient goal for vaccine induced immunity. We originally showed that IgE antibodies played in experimental models a pivotal role for the development of protective immunity. These laboratory findings have been now confirmed in human populations. Following the molecular cloning and expression of a protein 28 kDa protein of Schistosoma mansoni and its identification as a glutathion S-transferase, immunization experiments have been undertaken in several animal species (rats, mice, baboons). Together with a significant reduction in parasite burden, vaccination with Sm28 GST was recently shown to reduce significantly parasite fecundity and egg viability leading to a decrease in liver pathology. Whereas IgE antibodies were shown to be correlated with protection against infection, IgA antibodies have been identified as one of the factors affecting egg laying and viability. In human populations, a close association was found between IgA antibody production to Sm28 GST and the decrease of egg output. The use of appropriate monoclonal antibody probes has allowed the demonstration that the inhibition of parasite fecundity following immunization was related to the inhibition of enzymatic activity of the molecule. Epitope mapping of Sm28 GST has indicated the prominent role of the N and C terminal domains. Immunization with the corresponding synthetic peptides was followed by a decrease of 70% of parasite fecundity and egg viability. As a preliminary step towards phase I human trials, vaccination experiments have been performed in cattle, a natural model for Schistosoma bovis. Vaccination of calves with the S. bovis GST has led to a reduction of ever 80% of egg output and tissue egg count. Significant levels of protection were also observed in goats after immunization with the recombinant S. bovis GST. Increasing evidence of the participation of IgA antibodies in protective immunity has prompted us toward the development of mucosal immunization. Preliminary results indicate that significant levels of protection can be achieved following oral immunization with live attenuated vectors or liposomes. These studies seem to represent a promising approach towards the future development of a vaccine strategy against one of major human parasitic diseases.
Resumo:
For the development of vaccine strategies to generate efficient protection against chronic infections such as parasitic diseases, and more precisely schistosomiasis, controlling pathology could be more relevant than controlling the infection itself. Such strategies, motivated by the need for a cost-effective complement to existing control measures, should focus on parasite molecules involved in fecundity, because in metazoan parasite infections pathology is usually linked to the output of viable eggs. In numerous animal models, vaccination with glutathione S-transferases of 28kDa has been shown to generate an immune response strongly limiting the worm fecundity, in addition to the reduction of the parasite burden. Recent data on acquired immunity directed to 28GST in infected human populations, and new development to draw adapted vaccine formulations, are presented.
Resumo:
The undisputed, worldwide success of chemotherapy notwithstanding, schistosomiasis continues to defy control efforts in as much rapid reinfection demands repeated treatment, sometimes as often as once a year. There is thus a need for a complementary tool with effect for the longer term, notably a vaccine. International efforts in this direction have been ongoing for several decades but, until the recombinant DNA techniques were introduced, antigen production remained an unsurmountable bottleneck. Although animal experiments have been highly productive and are still much needed, they probably do not reflect the human situation adequately and real progress can not be expected until more is known about human immune responses to schistosome infection. It is well-known that irradiated cercariae consistently produce high levels of protection in experimental animals but, for various reasons, this proof of principle cannot be directly exploited. Research has instead been focussed on the identification and testing of specific schistosome antigens. This work has been quite successful and is already at the stage where clinical trials are called for. Preliminary results from coordinated in vitro laboratory and field epidemiological studies regarding the protective potential of several antigens support the initiation of such trials. A series of meetings, organized earlier this year in Cairo, Egypt, reviewed recent progress, selecteded suitable vaccine candidates and made firm recommendations for future action including pledging support for large-scale production according to good manufacturing practice (GMP) and Phase I trials. Scientists at the American Centers for Disease Control and Prevention (CDC) have drawn up a detailed research plan. The major financial support will come from USAID, Cairo, which has established a scientific advisory group of Egyptian scientists and representatives from current and previous international donors such as WHO, NIAID, the European Union and the Edna McConnell Clark Foundation.
Resumo:
Abstract Background The CACTA (also called En/Spm) superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs) and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of the elements flanked by direct repeats and the presence of a Transposase_21 domain, that suggest a distant relationship to CACTA transposons from Magnoliophyta. Several sequences from other Metazoa and Fungi code for proteins similar to those encoded by SmTRC1, suggesting that such elements have a common ancestry, and indicating inheritance through vertical transmission before separation of the Eumetazoa, Fungi and Plants.
Resumo:
BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.
METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.
CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Resumo:
Pregnant women have a 2-3 fold higher probability of developing restless legs syndrome (RLS - sleep-related movement disorders) than general population. This study aims to evaluate the behavior and locomotion of rats during pregnancy in order to verify if part of these animals exhibit some RLS-like features. We used 14 female 80-day-old Wistar rats that weighed between 200 and 250 g. The rats were distributed into control (CTRL) and pregnant (PN) groups. After a baseline evaluation of their behavior and locomotor activity in an open-field environment, the PN group was inducted into pregnancy, and their behavior and locomotor activity were evaluated on days 3, 10 and 19 of pregnancy and in the post-lactation period in parallel with the CTRL group. The serum iron and transferrin levels in the CTRL and PN groups were analyzed in blood collected after euthanasia by decapitation. There were no significant differences in the total ambulation, grooming events, fecal boli or urine pools between the CTRL and PN groups. However, the PN group exhibited fewer rearing events, increased grooming time and reduced immobilization time than the CTRL group (ANOVA, p<0.05). These results suggest that pregnant rats show behavioral and locomotor alterations similar to those observed in animal models of RLS, demonstrating to be a possible animal model of this sleep disorder.
Resumo:
O melhoramento genético animal é, normalmente, pesquisado e desenvolvido nas universidades e instituições públicas de pesquisa do Brasil. No entanto, os rebanhos de exploração zootécnica, verdadeiros objetivos desses estudos, pertencem à iniciativa privada. O melhoramento genético animal e as parcerias público-privadas constituem-se em um caso especial de grande sucesso, que é analisado no presente texto, com ênfase especial ao Grupo de Melhoramento Animal e Biotecnologia da Faculdade de Zootecnia e Engenharia de Alimentos da Universidade de São Paulo, instituição de origem dos autores. O sucesso desse grupo, medido em atividades de pesquisa e suas conseqüentes publicações, de ensino e formação de recursos humanos e de extensão de serviços à comunidade, é apresentado como incentivo aos pesquisadores das mais diversas áreas ligadas à produção animal.
Resumo:
Forty-nine typical and atypical enteropathogenic Escherichia coli (EPEC) strains belonging to different serotypes and isolated from humans, pets (cats and dogs), farm animals (bovines, sheep, and rabbits), and wild animals (monkeys) were investigated for virulence markers and clonal similarity by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The virulence markers analyzed revealed that atypical EPEC strains isolated from animals have the potential to cause diarrhea in humans. A close clonal relationship between human and animal isolates was found by MLST and PFGE. These results indicate that these animals act as atypical EPEC reservoirs and may represent sources of infection for humans. Since humans also act as a reservoir of atypical EPEC strains, the cycle of mutual infection of atypical EPEC between animals and humans, mainly pets and their owners, cannot be ruled out since the transmission dynamics between the reservoirs are not yet clearly understood.
Resumo:
The aim of this work was to evaluate the performance of femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the determination of elements in animal tissues. Sample pellets were prepared from certified reference materials, such as liver, kidney, muscle, hepatopancreas, and oyster, after cryogenic grinding assisted homogenization. Individual samples were placed in a two-axis computer-controlled translation stage that moved in the plane orthogonal to a beam originating from a Ti:Sapphire chirped-pulse amplification (CPA) laser system operating at 800 mu and producing a train of 840 mu J and 40 fs pulses at 90 Hz. The plasma emission was coupled into the optical fiber of a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Time-resolved characteristics of the laser-produced plasmas showed that the best results were obtained with delay times between 80 and 120 ns. Data obtained indicate both that it is a matrix-independent sampling process and that fs-LIBS can be used for the determination of Ca, Cu, Fe, K, Mg, Na, and P, but efforts must be made to obtain more appropriate detection limits for Al, Sr, and Zn.
Resumo:
Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.