1000 resultados para anelastic spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The possibility of variable stoichiometry and the high mobility of oxygen in the CuOx planes of SmBa2Cu3O7 give rise to a rich phase diagram. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in SmBa2Cu3O7, above room temperature, using a torsion pendulum operating in frequencies around 40 Hz. The mobility of oxygen atoms in the CuOx planes in the various phases has been discussed and the thermally activated peak of elastic energy dissipation observed around 500 K was interpreted in that framework. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Impurity interstitial atoms present in metals with BCC structure can diffuse in the metallic matrix by jumps to energetically equivalent crystallographic sites. Anelastic spectroscopy (internal friction) is based on the measurement of mechanical loss or internal friction as a function of temperature. Due to its selective and nondestructive nature, anelastic spectroscopy is well suited for the study of diffusion of interstitial elements in metals. Internal friction measurements were made using the torsion pendulum technique with oscillation frequency of a few Hz, temperature interval from 300 to 700 K, heating rate of about 1 K/min, and vacuum better than 10-5 mbar. The polycrystalline Nb and Ta samples used were supplied by Aldrich Inc. The results obtained showed thermally activated relaxation structures due to stress-induced ordering of oxygen atoms around the Nb (or Ta) atoms of the metallic matrix. The results were interpreted by three methods and led to activation enthalpy values for the diffusion of oxygen in Nb and Ta of 1.15 eV and 1.10 eV, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ti and its alloys have been used thoroughly in the production of prostheses and dental implants due to their properties, such as high corrosion resistance, low elasticity modulus and high mechanical strength/density relation. Among the Ti-based alloys, the Ti-35Nb-7Zr-5Ta (TNZT) is one that presents the smallest elasticity modulus, making it an excellent alternative to be used as a biomaterial. In this paper, mechanical spectroscopy measurements were made in TNZT alloys containing several quantities of oxygen and nitrogen in solid solution. Mechanical spectroscopy measurements were made by using a torsion pendulum, operating at an oscillation frequency in the interval 4-30 Hz, temperature in the range 100-700 K, heating rate of about 1 K/min and vacuum lower than 10(-5) Torr. Complex relaxation structures and a reduction in the elasticity modulus were observed for the heat-treated and doped samples. The observed peaks were associated with the interactions of interstitial atoms and the alloy elements. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most studied ceramic superconductors for application has been, undoubtedly, Bi2Sr2CaCu2O8+delta. Although being a multiphasic material, it has proved to have great advantages compared to other ceramic systems. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature call distinguish among different atomic jumps that occur inside the various phases or at different local ordering. In this paper, mechanical loss spectra of Bi2Sr2CaCu2O8+delta bar shaped samples, made by a conventional method, have been measured between 80 and 600 K, using a torsion pendulum operating in frequencies below 50 Hz, for samples annealed in vacuum up to 600 K. Possible relaxation mechanisms are proposed to explain the origin of the mechanical-loss peaks observed 300 and 500 K. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anelastic spectroscopy measurements (internal friction) are sensitive tools for the study of defects in solids, in particular the mobility of interstitial oxygen. Samples of Bi2Sr2CaCu2Oy were analyzed after being submitted to two thermal treatments in vacuum, one at 973 K and another at 673 K. Anelastic spectroscopy measurements were performed using a torsion pendulum operating at around 38 Hz and at a temperature range of 88 and 700 K with heating rate of 1 K/min and vacuum better than 10(-5) Torr. Complex relaxation structures reversible with new thermal treatments were observed. These relaxation structures were attributed to O-M structural phase transitions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anelastic spectroscopy has been performed on a sample of superconducting oxide SmBa2Cu3O7-delta (SBCO) using a torsion pendulum operating with frequency around 10 Hz. A thermally activated relaxation peak is observed near 500 K with the activation enthalpy of 1.55 +/- 0.03 eV and the pre-exponential factor of approximately 10(-15) s, which is attributed to the mobility of non-stoichiometric oxygen by jumps in positions O1 and O5 of the lattice. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium dioxide (rutile) has a lot of interesting and useful features and hence is widely utilized for application. It has been used as white pigment, photocatalyst, biocompatible material and semiconductor material used in solar battery. In semiconducting TiO2 oxygen vacancies are said to play an important role in the electrical conduction. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occur in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in TiO2 samples using a torsion pendulum operating in frequencies around 40Hz, in the temperature range between -173°C to 330°C with heating rate of 1°C/min. The results shown a reduction in the elasticity modulus with the increase in the corn starch content used for this consolidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering ceramics have found use in many applications, such as engine parts, ball bearings, artificial bone and hip replacements and gyroscopes, because of their good chemical inertness, hardness, high temperature stability and excellent wear resistance. Oxide ceramic may meet these demands. Alumina (Al2O3) ceramics offer a high potential for many engineering applications, such as wear- and/or corrosion-resistant components, and as material for substrates or housings in microelectronic devices. Alumina is used among other things for seal ring, draw-cones, guides, water mixing tapes, bearing parts, medical prostheses and cutting tools. Measurements of the elastic energy loss and modulus (anelastic spectroscopy) as a function of temperature can distinguish among the different atomic jumps, which occurs in the various phases or at different local ordering. In this paper, it is reported anelastic relaxation measurements in Al2O3 samples using commercial starch. These measurements were carried out in a torsion pendulum operating in frequencies around 40 Hz. The results shown strongly influence of the type of forming in the elastic modulus obtained by anelastic relaxation measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the discovery of the high Tc superconductors, several works have been made about the different properties of these materials. Anelastic spectroscopy experiments are sensitive tools to the study of defects in solids and phase transitions. By this technique, we can distinguish the different types of atomic jumps that happen to different temperatures. The intensity of the peaks in the anelastic spectrum and the step in the torsional modulus are related with the concentration of the relaxing entities, and the position of the peaks is determined by its mobility. In this paper, the study on Bi and Sm based superconducting oxides was made by anelastic relaxation measurements using a torsion pendulum. The samples were submitted to successive thermal treatments in high vacuum, in the temperature range between 100 K and 650 K, heating rate about 1 K/min. For Bi based superconducting oxides the results shown two peaks, that were associated to interstitial oxygen mobility and to orthorhombic to monoclinic phase transition. For Sm based superconducting oxides the results shown a relaxation peak that was attributed to the jumps of the oxygen atoms in the inter-chains O1 and 05 of the lattice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anelastic spectroscopy (internal friction and the dynamic modulus) was measured by means of a torsion pendulum at 3-12 Hz, in the range of 100-300 K, for a KAP metaphosphate glass. Two thermally activated internal friction peaks appeared at ∼190 and ∼250 K. These peaks were attributed to the behavior of potassium ions (high temperature) and to hydrogen (low temperature). Dynamic modulus showed a gradual decrease with increasing temperature in the range studied for all compositions. © 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of their low elasticity modulus, titanium alloys have excellent biocompatibility, and are largely used in orthopedic prostheses. Among the properties that are beneficial for use in orthopedic implants is the elasticity modulus, which is closely connected to the crystal structure of the material. Interstitial elements, such as oxygen, change the mechanical properties of the material. Anelastic spectroscopy measurements are a powerful tool for the study of the interaction of these elements with the metallic matrix and substitutional solutes, providing information on the diffusion and concentration of interstitial elements. In this study, the effect of oxygen on the anelastic properties of alloys in the Ti-15Mo-Zr system was analyzed using anelastic spectroscopy measurements. The diffusion coefficients, pre-exponential factors, and activation energies of these alloys were calculated for oxygen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The composite SmBa2Cu3O7-delta (Sm-123), obtained by the substitution of the ion Y for Sm in the very well known and studied YBa2Cu3O7-delta (Y-123), is potentially attractive for better understanding superconductivity mechanisms and for its applications as electronic devices. Sm-123 samples show higher critical temperatures than Y-123 ones do and a larger solubility of Sm in Ba-Cu-O solvent, which makes their growth process faster. When oxygen is present interstitially, it strongly affects the physical properties of the material. The dynamics of oxygen can be investigated by anelastic spectroscopy measurements, a powerful technique for the precise determination of the oscillation frequency and the internal friction when atomic jumps are possible. Anelastic spectroscopy allows determining the elasticity modulus (related to the oscillation frequency) and the elastic energy loss (related to the internal friction) as a function of the temperature. The sample was also investigated by X-ray diffraction (XRD), scanning electronic microscopy (SEM), and electric resistivity. The results obtained show a thermally activated relaxation structure composed by at least 3 relaxation processes. These processes may be attributed to the jumps of oxygen atoms present of the Cu-O plane in the orthorhombic phase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.