967 resultados para androgen receptor gene
Resumo:
Background Women with 21-hydroxylase deficiency present much variability in external genitalia virilization, even among those with similar impairments of 21-hydroxylase (21OH) activity. Objective To evaluate if the number of CAG (nCAG) repeats of the androgen receptor gene influences the degree of external genitalia virilization in women with CYP21A2 mutations, grouped according to impairment of 21OH activity. Patients The nCAG was determined in 106 congenital adrenal hyperplasia (CAH) patients and in 302 controls. The patients were divided, according to their CYP21A2 genotypes, into Groups A and B, which confer total and severe impairment of 21OH activity, respectively. Methods The inactivation pattern of the X-chromosome was studied through genomic DNA digestion with Hpa II. The CAG repeat region was amplified by polymerase chain reaction (PCR) and analysed by GeneScan. Results The nCAG and the frequency of severe skewed X-inactivation did not differ between normal women and patients. The nCAG median in genotype A was 20.7 (IQR 2.3) for Prader I + II, 22.5 (3.6) for Prader III and 21 (2.9) for Prader IV + V (P < 0.05 for Prader III and Prader IV + V). The nCAG median in genotype B was 21.3 (1.1) for Prader I + II, 20.5 (2.9) for Prader III and 22 (2.8) for Prader IV + V (P > 0.05). A significant difference was found regarding the nCAG median in patients presenting Prader III from genotypes A and B. Conclusions We observed great variability in the degree of external genitalia virilization in both CYP21A2 genotypes, and we showed that the CAG repeats of the androgen receptor gene influences this phenotypic variability.
Resumo:
BACKGROUND Androgen receptor (AR) gene mutations are the most frequent cause of 46,XY disorders of sex development (DSD) and are associated with a variety of phenotypes, ranging from phenotypic women [complete androgen insensitivity syndrome (CAIS)] to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). OBJECTIVE The aim of the study was to characterize the contribution of the AR gene to the molecular cause of 46,XY DSD in a series of Spanish patients. SETTING We studied a series of 133 index patients with 46,XY DSD in whom gonads were differentiated as testes, with phenotypes including varying degrees of undervirilization, and in whom the AR gene was the first candidate for a molecular analysis. METHODS The AR gene was sequenced (exons 1 to 8 with intronic flanking regions) in all patients and in family members of 61% of AR-mutated gene patients. RESULTS AR gene mutations were found in 59 individuals (44.4% of index patients), of whom 46 (78%) were CAIS and 13 (22%) PAIS. Fifty-seven different mutations were found: 21.0% located in exon 1, 15.8% in exons 2 and 3, 57.9% in exons 4-8, and 5.3% intronic. Twenty-three mutations (40.4%) had been previously described and 34 (59.6%) were novel. CONCLUSIONS AR gene mutation is the most frequent cause of 46,XY DSD, with a clearly higher frequency in the complete phenotype. Mutations spread along the whole coding sequence, including exon 1. This series shows that 60% of mutations detected during the period 2002-2009 were novel.
Resumo:
We describe the identification of point mutations in the androgen receptor gene in five Brazilian patients with female assignment and behavior. The eight exons of the gene were amplified by the polymerase chain reaction (PCR) and analyzed for single-strand conformation polymorphism (SSCP) to detect the mutations. Direct sequencing of the mutant PCR products demonstrated single transitions in three of these cases: G®A in case 1, within exon C, changing codon 615 from Arg to His; G®A in case 2, within exon E, changing codon 752 from Arg to Gln, and C®T in case 3, within exon B, but without amino acid change.
Resumo:
The human androgen receptor (AR) gene promoter lies in a GC-rich region containing two principal sites of transcription initiation and a putative Sp1 protein-binding site, without typical "TATA" and "CAAT" boxes. It has been suggested that mutations within the 5'untranslated region (5'UTR) may contribute to the development of prostate cancer by changing the rates of gene transcription and/or translation. In order to investigate this question, the aim of the present study was to search for the presence of mutations or polymorphisms at the AR-5'UTR in 92 prostate cancer patients, where histological diagnosis of adenocarcinoma was established in specimens obtained from transurethral resection or after prostatectomy. The AR-5'UTR was amplified by PCR from genomic DNA samples of the patients and of 100 healthy male blood donors, included as controls. Conformation-sensitive gel electrophoresis was used for DNA sequence alteration screening. Only one band shift was detected in one individual from the blood donor group. Sequencing revealed a new single nucleotide deletion (T) in the most conserved portion of the promoter region at position +36 downstream from the transcription initiation site I. Although the effect of this specific mutation remains unknown, its rarity reveals the high degree of sequence conservation of the human androgen promoter region. Moreover, the absence of detectable variation within the critical 5'UTR in prostate cancer patients indicates a low probability of its involvement in prostate cancer etiology.
Resumo:
[EN] The exon-1 of the androgen receptor (AR) gene contains two repeat length polymorphisms which modify either the amount of AR protein inside the cell (GGN(n), polyglycine) or its transcriptional activity (CAG(n), polyglutamine). Shorter CAG and/or GGN repeats provide stronger androgen signalling and vice versa. To test the hypothesis that CAG and GGN repeat AR polymorphisms affect muscle mass and various variables of muscular strength phenotype traits, the length of CAG and GGN repeats was determined by PCR and fragment analysis and confirmed by DNA sequencing of selected samples in 282 men (28.6 +/- 7.6 years). Individuals were grouped as CAG short (CAG(S)) if harbouring repeat lengths of 21. GGN was considered short (GGN(S)) or long (GGN(L)) if GGN 23, respectively. No significant differences in lean body mass or fitness were observed between the CAG(S) and CAG(L) groups, or between GGN(S) and GGN(L) groups, but a trend for a correlation was found for the GGN repeat and lean mass of the extremities (r=-0.11, p=0.06). In summary, the lengths of CAG and GGN repeat of the AR gene do not appear to influence lean mass or fitness in young men.
Resumo:
The gender diagnosticity (GD) approach of Lippa (1995) was used to evaluate the relationship of within-sex differences in psychological masculinity-femininity to a genetic characteristic, the length of a repeated CAG sequence in the X-linked androgen receptor (AR) gene. Previously assessed adult samples in Australia and Sweden were used for this purpose. A weak relationship (correlations in the range .11 to .14) was obtained in both countries. Additional data from adolescent twins from Australia (12-, 14-, 16-year-olds) did not confirm such a relationship at those ages, especially for males. The fact that this sample consisted of twins permitted two kinds of within-pair comparisons: (1) Did the dizygotic twin who had the longer AR sequence have the higher GD score? (2) Was one twin's GD score more highly correlated with the other twin's AR score in MZ than in DZ pairs? The answer in both cases was negative. Clarification of these relationships will require large samples and measurements at additional ages.
Resumo:
Kennedy's disease (spinobulbar muscular atrophy) is an X-linked form of motor neuron disease affecting adult males carrying a CAG trinucleotide repeat expansion within the androgen receptor gene. While expression of Kennedy's disease is thought to be confined to males carrying the causative mutation, subclinical manifestations have been reported in a few female carriers of the disease. The reasons that females are protected from the disease are not clear, especially given that all other diseases caused by CAG expansions display dominant expression. In the current study, we report the identification of a heterozygote female carrying the Kennedy's disease mutation who was clinically diagnosed with motor neuron disease. We describe analysis of CAG repeat number in this individual as well as 33 relatives within the pedigree, including two male carriers of the Kennedy's mutation. The female heterozygote carried one expanded allele of the androgen receptor gene with CAG repeats numbering in the Kennedy's disease range (44 CAGs), with the normal allele numbering in the upper-normal range (28 CAGs). The subject has two sons, one of whom carries the mutant allele of the gene and has been clinically diagnosed with Kennedy's disease, whilst the other son carries the second allele of the gene with CAGs numbering in the upper normal range and displays a normal phenotype. This coexistence of motor neuron disease and the presence of one expanded allele and one allele at the upper limit of the normal range may be a coincidence. However, we hypothesize that the expression of the Kennedy's disease mutation combined with a second allele with a large but normal CAG repeat sequence may have contributed to the motor neuron degeneration displayed in the heterozygote female and discuss the possible reasons for phenotypic expression in particular individuals.
Resumo:
Prenatal exposure to testosterone has been hypothesised to effect lateralization by influencing cell death in the foetal brain. Testosterone binds to the X chromosome linked androgen receptor, which contains a polymorphic polyglutamine CAG repeat, the length of which is positively correlated with testosterone levels in males, and negatively correlated in females. To determine whether the length of the androgen receptor mediates the effects of testosterone on laterality, we examined the association between the number of CAG repeats in the androgen receptor gene and handedness for writing. Association was tested by adding regression terms for the length of the androgen receptor alleles to a multi-factorial-threshold model of liability to left-handedness. In females we found the risk of left-handedness was greater in those with a greater number of repeats (p=0.04), this finding was replicated in a second independent sample of female twins (p=0.014). The length of the androgen receptor explained 6% of the total variance and 24% of the genetic variance in females. In males the risk of left-handedness was greater in those with fewer repeats (p=0.02), with variation in receptor length explaining 10% of the total variance and 24% of the genetic variance. Thus, consistent with Witelson's theory of testosterone action, in all three samples the likelihood of left handedness increased in those individuals with variants of the androgen receptor associated with lower testosterone levels.
Resumo:
The androgen insensitivity syndrome (AIS) is described as a dysfunction of the androgen receptor (AR) in 46,XY individuals, which can be associated with mutations in the AR gene or can be due to unknown mechanisms. Different mutations in AIS generally cause variable phenotypes that range from a complete hormone resistance to a mild form usually associated with male infertility. The purpose of this study was to search for mutations in the AR gene in a fertile man with gynecomastia and to evaluate the influence of the mutation on the AR transactivation ability. Sequencing of the AR gene revealed the p.Pro695Ser mutation. It is located within the AR ligand-binding domain. Bioinformatics analysis indicated a deleterious role, which was verified after testing transactivation activity and N-/C-terminal (N/C) interaction by in vitro expression of a reporter gene and 2-hybrid assays. p.Pro695Ser showed low levels of both transactivation activity and N/C interaction at low dihydrotestosterone (DHT) conditions. As the ligand concentration increased, both transactivation activity and N/C interaction also increased and reached normal levels. Therefore, this study provides functional insights for the p.Pro695Ser mutation described here for the first time in a patient with mild AIS. The expression profile of p.Pro695Ser not only correlates to the patient's phenotype, but also suggests that a high-dose DHT therapy may overcome the functional deficit of the mutant AR.
Resumo:
The aim of the present study was to examine the impact of polymorphisms in prostate-specific antigen (PSA) and androgen-related genes (AR, CYP17, and CYP19) on prostate cancer (PCa) risk in selected high-risk patients who underwent prostate biopsy. Blood samples and prostate tissues were obtained for DNA analysis. Single-nucleotide polymorphisms in the 50-untranslated regions (UTRs) of the PSA (substitution A > G at position -158) and CYP17 (substitution T > C at 50-UTR) genes were detected by polymerase chain reaction (PCR)-restriction fragment length polymorphism assays. The CAG and TTTA repeats in the AR and CYP19 genes, respectively, were genotyped by PCR-based GeneScan analysis. Patients with the GG genotype of the PSA gene had a higher risk of PCa than those with the AG or AA genotype (OR = 3.79, p = 0.00138). The AA genotype was associated with lower PSA levels (6.44 +/- 1.64 ng/mL) compared with genotypes having at least one G allele (10.44 +/- 10.06 ng/mL) (p = 0.0687, 95% CI - 0.3146 to 8.315, unpaired t-test). The multivariate analysis confirmed the association between PSA levels and PSA genotypes (AA vs. AG+GG; chi(2) = 0.0482) and CYP19 (short alleles homozygous vs. at least one long allele; chi(2) = 0.0110) genotypes. Genetic instability at the AR locus leading to somatic mosaicism was detected in one PCa patient by comparing the length of AR CAG repeats in matched peripheral blood and prostate biopsy cores. Taken together, these findings suggest that the PSA genotype should be a clinically relevant biomarker to predict the PCa risk.
Resumo:
Background: Androgens are key regulators of prostate gland maintenance and prostate cancer growth, and androgen deprivation therapy has been the mainstay of treatment for advanced prostate cancer for many years. A long-standing hypothesis has been that inherited variation in the androgen receptor (AR) gene plays a role in prostate cancer initiation. However, studies to date have been inconclusive and often suffered from small sample sizes. Objective and Methods: We investigated the association of AR sequence variants with circulating sex hormone levels and prostate cancer risk in 6058 prostate cancer cases and 6725 controls of Caucasian origin within the Breast and Prostate Cancer Cohort Consortium. We genotyped a highly polymorphic CAG microsatellite in exon 1 and six haplotype tagging single nucleotide polymorphisms and tested each genetic variant for association with prostate cancer risk and with sex steroid levels. Results: We observed no association between AR genetic variants and prostate cancer risk. However, there was a strong association between longer CAG repeats and higher levels of testosterone (P = 4.73 × 10−5) and estradiol (P = 0.0002), although the amount of variance explained was small (0.4 and 0.7%, respectively). Conclusions: This study is the largest to date investigating AR sequence variants, sex steroid levels, and prostate cancer risk. Although we observed no association between AR sequence variants and prostate cancer risk, our results support earlier findings of a relation between the number of CAG repeats and circulating levels of testosterone and estradiol.
Resumo:
Background: CAH patients have an increased risk of cardiovascular disease, and it remains unknown if lifelong glucocorticoid (GC) treatment is a contributing factor. In the general population, glucocorticoid receptor gene (NR3C1) polymorphisms are associated with an adverse metabolic profile. Our aim was to analyze the association between the NR3C1 polymorphisms and the metabolic profile of CAH patients. Methodology: Sixty-eight adult patients (34SV/34SW) with a mean age of 28.4 +/- 9 years received dexamethasone (mean 0.27 +/- 0.11 mg/day) to obtain normal androgen levels. SW patients also received fludrocortisone (50 mu g/day). Metabolic syndrome (MetS) was defined by the NCEP ATPIII criteria and obesity by BMI >= 30 kg/m(2). NR3C1 alleles were genotyped, and association analyses with phenotype were carried out with Chi-square, t-test and regression analysis. Results: Obesity and MetS were observed in 23.5% and 7.3% of patients, respectively, and were not correlated with GC doses and treatment duration. BMI was positively correlated with blood pressure (BP), triglycerides (TG), LDL-c levels and HOMA-IR and inversely correlated with HDL-c levels. BclI and A3669G variants were found in 26.4% and 9.6% of alleles, respectively. Heterozygotes for the BclI polymorphism presented with higher BMI (29 kg/m(2) +/- 5.3 vs. 26 kg/m(2) +/- 5.3, respectively) and waist circumference (89 cm +/- 12.7 vs. 81 cm +/- 13, respectively) compared to wild-type subjects. Hypertension was found in 12% of patients and heterozygotes for the BclI polymorphism presented higher systolic BP than wild type subjects. Low HDL-c and high TG levels were identified in 30% and 10% of patients, respectively, and were not associated with the NR3C1 polymorphisms. A3669G carriers and non-carriers did not differ. Conclusion: In addition to GC therapy, the BclI GR variant might play an important role in obesity susceptibility in CAH patients. Genotyping of GR polymorphisms could result in the identification of a subgroup at risk patients, allowing for the establishment of personalized treatment and the avoidance of long-term adverse consequences.
Resumo:
Triple negative breast cancer (TNBC) is a very aggressive tumor subtype characterized by the lack of expression of estrogen receptor 1 (ESR1), due in the most of cases to an increased expression of DNA methyltransferases (DNMTs) and hypermethylation in CpG islands, resulting in gene silencing. Furthermore, in ESR1- negative breast cancers, androgen receptor (AR) is highly expressed and some studies suggest that it can drive tumor progression and might represent a therapeutic target. A correlation between microRNAs, small non-coding RNAs that regulate gene expression, and DNMTs was investigated in a TNBC cell line to restore a normal methylation pattern of ESR1, leading to its re-expression and conferring again sensitivity to selective estrogen receptor modulators (SERMs). miR-148A and miR-29B were found to be involved in the reduction of the expression of DNMT1 and DNMT3A and in a slight increase of ESR1 expression, but not at protein level. Then, we found a down-regulation of AR by miRs-7, -9, -27a, -27b, -29a, -29b, -29c, -127-3p, -127-5p and -376 at 48h post transfection and an up-regulation by miR-15a and miR-16 at every time considered. We concomitantly investigated a possible increase of Tamoxifen, Herceptin and Metformin sensitivity after AR silencing in MDA-MB 453 and T-47D cell lines. Cells seemed more sensitive when silenced for AR only in MDA-MB-453 at 24h post Tamoxifen treatment. Studies on Metformin have basically confirmed an increase of drug sensitivity due to AR silencing in both cell lines. Analysis of Herceptin showed how MDA-MB 453 samples silenced for AR have a slight decrease in the percentage of proliferating cells, demonstrating a possible increase in the response to treatment. These preliminary data provide the basis for further study of the modulation of the expression of AR by microRNAs and it will be interesting to understand the molecular mechanisms underlying these interactions.
Resumo:
Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.
Resumo:
Astrogliosis is induced by neuronal damage and is also a pathological feature of the major aging-related neurodegenerative disorders. The mechanisms that control the cascade of astrogliosis have not been well established. In a previous study, we identified a novel androgen receptor (AR)-interacting protein (p44/WDR77) and found that it plays a critical role in the control of proliferation and differentiation of prostate epithelial cells. In the present study, we found that deletion of the p44 gene in the mouse brain caused accelerated aging with dramatic astrogliosis. The p44/WDR77 is expressed in astrocytes and loss of p44/WDR77 expression in astrocytes leads to astrogliosis. Our results reveal a novel role of p44/WDR77 in astrocytes, which may explain the well-documented role of androgens in suppression of astrogliosis. While many of detailed mechanisms of astrocyte activation remain to be elucidated, a number pathways have been implicated in astrocyte activation including p21Cip1 and the NF-kB pathway. Astrocytic activation induced by p44/WDR77 gene deletion was associated with a significant increase of p21Cip1 expression and NF-kB activation characterized by p65 nuclear localization. We found that down-regulation of p21Cip1 expression inhibited astrocyte activation induced by the p44/WDR77 deletion and was accompanied by a decreased p65 nuclear localization. While p21Cip1 role in astrocyte activation and NF-kB activation is not well understood, studies of other cell cycle regulators have implicated cell cycle control systems as modulators of astrocyte activation, thus p21Cip1 could induce secondary effect to induce p65 nuclear localization. However, p65 knockdown completely relieved the inhibition of astrocyte growth induced by the p44/WDR77 deletion, while p21Cip1 knockdown only partially recovered this inhibition. Thus, NF-kB activity performs additional regulatory actions not mediated by p21Cip1. These analyses imply that p4/WDR77 suppresses astrocyte activation through modulating p21Cip1 expression and NF-kB activation.