999 resultados para analytical formulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analytical formulation of frequency splitting observed in the elliptical modes of single crystal silicon (SCS) micromechanical disk resonators. Taking the anisotropic elasticity of SCS into account, new formulae for computing modal mass and modal stiffness are first derived for accurate prediction of the modal frequency. The derived results are in good agreement with finite element simulation, showing a factor of 10 improvement in the prediction accuracy as compared to using the formula for the isotropic case. In addition, the analysis successfully explains the effect of anisotropy on the modal frequency splitting of primary elliptical modes, for which the maximum modal displacement is aligned with the directions of maximum (1 1 0) and minimum (1 0 0) elasticity respectively on a (1 0 0) SCS wafer. The measured frequency splitting of other degenerate modes is due to the manufacturing imperfections. © 2014 IOP Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze commercial solar panel performance (i.e., the current-voltage–I-V–curve) at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer’s datasheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the high dependence of photovoltaic energy efficiency on environmental conditions (temperature, irradiation...), it is quite important to perform some analysis focusing on the characteristics of photovoltaic devices in order to optimize energy production, even for small-scale users. The use of equivalent circuits is the preferred option to analyze solar cells/panels performance. However, the aforementioned small-scale users rarely have the equipment or expertise to perform large testing/calculation campaigns, the only information available for them being the manufacturer datasheet. The solution to this problem is the development of new and simple methods to define equivalent circuits able to reproduce the behavior of the panel for any working condition, from a very small amount of information. In the present work a direct and completely explicit method to extract solar cell parameters from the manufacturer datasheet is presented and tested. This method is based on analytical formulation which includes the use of the Lambert W-function to turn the series resistor equation explicit. The presented method is used to analyze the performance (i.e., the I - V curve) of a commercial solar panel at different levels of irradiation and temperature. The analysis performed is based only on the information included in the manufacturer's datasheet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proton radiation therapy is a precise form of radiation therapy, but the avoidance of damage to critical normal tissues and the prevention of geographical tumor misses require accurate knowledge of the dose delivered to the patient and the verification of his position demand a precise imaging technique. In proton therapy facilities, the X-ray Computed Tomography (xCT) is the preferred technique for the planning treatment of patients. This situation has been changing nowadays with the development of proton accelerators for health care and the increase in the number of treated patients. In fact, protons could be more efficient than xCT for this task. One essential difficulty in pCT image reconstruction systems came from the scattering of the protons inside the target due to the numerous small-angle deflections by nuclear Coulomb fields. The purpose of this study is the comparison of an analytical formulation for the determination of beam lateral deflection, based on Molière's theory and Rutherford scattering with Monte Carlo calculations by SRIM 2008 and MCNPX codes. © 2010 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The installation of induction distributed generators should be preceded by a careful study in order to determine if the point of common coupling is suitable for transmission of the generated power, keeping acceptable power quality and system stability. In this sense, this paper presents a simple analytical formulation that allows a fast and comprehensive evaluation of the maximum power delivered by the induction generator, without losing voltage stability. Moreover, this formulation can be used to identify voltage stability issues that limit the generator output power. All the formulation is developed by using the equivalent circuit of squirrel-cage induction machine. Simulation results are used to validate the method, which enables the approach to be used as a guide to reduce the simulation efforts necessary to assess the maximum output power and voltage stability of induction generators. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The plane problem of load transfer from an elastic interference or clearance fit pin to a large elastic sheet with a perfectly smooth interface is solved. As the load on the pin is monotonically increased, the pin-hole interface is in partial contact above certain critical load in interference fit and throughout the loading range in clearance fit.Such situations result in mixed boundary-value problems with moving boundaries and the arc of contact varies nonlinearly with applied load. These problems are analyzed by an inverse technique in which the arcs of contact/separation are prescribed and the causative loads are evaluated. A direct method of analysis is adopted using biharmonic polar trigonometric stress functions and a simple collocation method for satisfying the boundary conditions. A unified analytical formulation is achieved for interference and clearance fits. The solutions for the linear problem of push fits are inherent in the unified analysis. Numerical results highlighting the effects of pin and sheet elasticity parameters are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a simplified yet analytical formulation of the carrier backscattering coefficient for zig-zag semiconducting single walled carbon nanotubes under diffusive regime. The electron-phonon scattering rate for longitudinal acoustic, optical, and zone-boundary phonon emissions for both inter- and intrasubband transition rates have been derived using Kane's nonparabolic energy subband model.The expressions for the mean free path and diffusive resistance have been formulated incorporating the aforementioned phonon scattering. Appropriate overlap function in Fermi's golden rule has been incorporated for a more general approach. The effect of energy subbands on low and high bias zones for the onset of longitudinal acoustic, optical, and zone-boundary phonon emissions and absorption have been analytically addressed. 90% transmission of the carriers from the source to the drain at 400 K for a 5 mu m long nanotube at 105 V m(-1) has been exhibited. The analytical results are in good agreement with the available experimental data. (c) 2010 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we present a novel analytical formulation for the coupled partial differential equations governing electrostatically actuated constrained elastic structures of inhomogeneous material composition. We also present a computationally efficient numerical framework for solving the coupled equations over a reference domain with a fixed finite-element mesh. This serves two purposes: (i) a series of problems with varying geometries and piece-wise homogeneous and/or inhomogeneous material distribution can be solved with a single pre-processing step, (ii) topology optimization methods can be easily implemented by interpolating the material at each point in the reference domain from a void to a dielectric or a conductor. This is attained by considering the steady-state electrical current conduction equation with a `leaky capacitor' model instead of the usual electrostatic equation. This formulation is amenable for both static and transient problems in the elastic domain coupled with the quasi-electrostatic electric field. The procedure is numerically implemented on the COMSOL Multiphysics (R) platform using the weak variational form of the governing equations. Examples have been presented to show the accuracy and versatility of the scheme. The accuracy of the scheme is validated for the special case of piece-wise homogeneous material in the limit of the leaky-capacitor model approaching the ideal case.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, one-dimensional flow-acoustic analysis of two basic configurations of air cleaners, (i) Rectangular Axial-Inlet, Axial-Outlet (RAIAO) and (ii) Rectangular Transverse-Inlet, Transverse-Outlet (RTITO), has been presented. This 1-D analytical approach has been verified with the help of 3-D FEM based software. Through subtraction of the acoustic performance of the bare plenum (without filter element) from that of the complete air cleaner box, the solitary performance of the filter element has been evaluated. Part of the present analysis illustrates that the analytical formulation remains effective even with offset positioning of the air pipes from the centre of the cross section of the air cleaner. The 1-D analytical tool computes much faster than its 3-D simulation counterpart. The present analysis not only predicts the acoustical impact of mean flow, but it also depicts the scenario with increased resistance of the filter element. Thus, the proposed 1-D analysis would help in the design of acoustically efficient air cleaners for automotive applications. (C) 2011 Institute of Noise Control Engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We develop a continuum theory to model low energy excitations of a generic four-band time reversal invariant electronic system with boundaries. We propose a variational energy functional for the wavefunctions which allows us to derive natural boundary conditions valid for such systems. Our formulation is particularly suited for developing a continuum theory of the protected edge/surface excitations of topological insulators both in two and three dimensions. By a detailed comparison of our analytical formulation with tight binding calculations of ribbons of topological insulators modelled by the Bernevig-Hughes-Zhang (BHZ) Hamiltonian, we show that the continuum theory with a natural boundary condition provides an appropriate description of the low energy physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transmission loss (TL) of an elliptical cylindrical chamber muffler having a single side/end inlet and multiple side/end outlet is analyzed by means of the 3-D semi-analytical formulation based upon the modal expansion (in terms of the angular and radial Mathieu functions) and the Green's function. The acoustic pressure response obtained in terms of Green's function is integrated over surface area of the side/end ports (modeled as rigid pistons) and upon subsequent division by the port area, yields the acoustic pressure response or impedance Z] matrix parameters due to the uniform piston-driven model. The 3-D semi-analytical results are found to be in excellent agreement with the results obtained by means of 3-D FEA (SYSNOISE) simulations, thereby validating the semi-analytical procedure suggested in this work. Parametric studies such as the effect of chamber length (L), angular and axial locations of the ports, interchanging the locations of inlet and outlet ports as well as the addition of an outlet port for double outlet mufflers on the TL performance are reported, thereby leading to the formulation of design guidelines for obtaining muffler configurations exhibiting a broad-band TL spectrum. One such configuration is an axially long chamber having side-inlet and side-outlet ports such that one of the side ports is located at half the axial length on themajor/minor axis and the other side port is located at three-quarters (or one-quarter) of the axial length on the minor/major axis. (C) 2012 Institute of Noise Control Engineering.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Upheaval buckling (UHB) is a common design issue for high temperature buried pipelines. This paper highlights some of thekey issues affecting out-of-straightness (OOS) assessment of pipelines. The following factors are discussed; uplift resistancesoil models, uplift resistance in cohesive soils, uplift mobilisation, ratcheting, uplift resistance at low H/D ratios and thecorrect methodology for load factor selection. A framework for determining ratcheting mobilisation is proposed. Furtherresearch is required to verify and validate this proposed framework. UHB assessment of three different diameter pipelineswere carried out using finite element SAGE PROFILE package incorporating pipeline mobilisation and the results arecompared with semi-analytical formulation proposed by Palmer et al. 1990. The paper also presents a summary of as-laidpipeline features based on projects over the past 10 years.