994 resultados para analysis of covariance
Resumo:
The role of clinical chemistry has traditionally been to evaluate acutely ill or hospitalized patients. Traditional statistical methods have serious drawbacks in that they use univariate techniques. To demonstrate alternative methodology, a multivariate analysis of covariance model was developed and applied to the data from the Cooperative Study of Sickle Cell Disease.^ The purpose of developing the model for the laboratory data from the CSSCD was to evaluate the comparability of the results from the different clinics. Several variables were incorporated into the model in order to control for possible differences among the clinics that might confound any real laboratory differences.^ Differences for LDH, alkaline phosphatase and SGOT were identified which will necessitate adjustments by clinic whenever these data are used. In addition, aberrant clinic values for LDH, creatinine and BUN were also identified.^ The use of any statistical technique including multivariate analysis without thoughtful consideration may lead to spurious conclusions that may not be corrected for some time, if ever. However, the advantages of multivariate analysis far outweigh its potential problems. If its use increases as it should, the applicability to the analysis of laboratory data in prospective patient monitoring, quality control programs, and interpretation of data from cooperative studies could well have a major impact on the health and well being of a large number of individuals. ^
Resumo:
Analysis of covariance (ANCOVA) is a useful method of ‘error control’, i.e., it can reduce the size of the error variance in an experimental or observational study. An initial measure obtained before the experiment, which is closely related to the final measurement, is used to adjust the final measurements, thus reducing the error variance. When this method is used to reduce the error term, the X variable must not itself be affected by the experimental treatments, because part of the treatment effect would then also be removed. Hence, the method can only be safely used when X is measured before an experiment. A further limitation of the analysis is that only the linear effect of Y on X is being removed and it is possible that Y could be a curvilinear function of X. A question often raised is whether ANCOVA should be used routinely in experiments rather than a randomized blocks or split-plot design, which may also reduce the error variance. The answer to this question depends on the relative precision of the difference methods with reference to each scenario. Considerable judgment is often required to select the best experimental design and statistical help should be sought at an early stage of an investigation.
Resumo:
OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 x 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 x 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.
Resumo:
Objective: Five double-blind, randomized, saline-controlled trials (RCTs) were included in the United States marketing application for an intra-articular hyaluronan (IA-HA) product for the treatment of osteoarthritis (OA) of the knee. We report an integrated analysis of the primary Case Report Form (CRF) data from these trials. Method. Trials were similar in design, patient population and outcome measures - all included the Lequesne Algofunctional Index (LI), a validated composite index of pain and function, evaluating treatment over 3 months. Individual patient data were pooled; a repeated measures analysis of covariance was performed in the intent-to-treat (ITT) population. Analyses utilized both fixed and random effects models. Safety data from the five RCTs were summarized. Results: A total of 1155 patients with radiologically confirmed knee OA were enrolled: 619 received three or five IA-HA injections; 536 received. placebo saline injections. In the active and control groups, mean ages were 61.8 and 61.4 years; 62.4% and 58.8% were women; baseline total Lequesne scores 11.03 and 11.30, respectively. Integrated analysis of the pooled data set found a statistically significant reduction (P < 0.001) in total Lequesne score with hyaluronan (HA) (-2.68) vs placebo (-2.00); estimated difference -0.68 (95% CI: -0.56 to -0.79), effect size 0.20. Additional modeling approaches confirmed robustness of the analyses. Conclusions: This integrated analysis demonstrates that multiple design factors influence the results of RCTs assessing efficacy of intra-articular (IA) therapies, and that integrated analyses based on primary data differ from meta-analyses using transformed data. (C) 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Resumo:
Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aimed to investigate the effects of the once-daily prandial GLP-1 receptor agonist lixisenatide on postprandial plasma glucose (PPG), glucagon and insulin levels. Methods: Six randomized, placebo-controlled studies of lixisenatide 20μg once daily were included in this analysis: lixisenatide as monotherapy (GetGoal-Mono), as add-on to oral antidiabetic drugs (OADs; GetGoal-M, GetGoal-S) or in combination with basal insulin (GetGoal-L, GetGoal-Duo-1 and GetGoal-L-Asia). Change in 2-h PPG and glucose excursion were evaluated across six studies. Change in 2-h glucagon and postprandial insulin were evaluated across two studies. A meta-analysis was performed on least square (LS) mean estimates obtained from analysis of covariance (ANCOVA)-based linear regression. Results: Lixisenatide significantly reduced 2-h PPG from baseline (LS mean difference vs. placebo: -4.9mmol/l, p<0.001) and glucose excursion (LS mean difference vs. placebo: -4.5mmol/l, p<0.001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs. placebo: -19.0ng/l, p<0.001) and insulin (LS mean difference vs. placebo: -64.8 pmol/l, p<0.001). There was a stronger correlation between 2-h postprandial glucagon and 2-h PPG with lixisenatide than with placebo. Conclusions: Lixisenatide significantly reduced 2-h PPG and glucose excursion together with a marked reduction in postprandial glucagon and insulin; thus, lixisenatide appears to have biological effects on blood glucose that are independent of increased insulin secretion. These effects may be, in part, attributed to reduced glucagon secretion. © 2014 John Wiley and Sons Ltd.
Resumo:
This study was an evaluation of a Field Project Model Curriculum and its impact on achievement, attitude toward science, attitude toward the environment, self-concept, and academic self-concept with at-risk eleventh and twelfth grade students. One hundred eight students were pretested and posttested on the Piers-Harris Children's Self-Concept Scale, PHCSC (1985); the Self-Concept as a Learner Scale, SCAL (1978); the Marine Science Test, MST (1987); the Science Attitude Inventory, SAI (1970); and the Environmental Attitude Scale, EAS (1972). Using a stratified random design, three groups of students were randomly assigned according to sex and stanine level, to three treatment groups. Group one received the field project method, group two received the field study method, and group three received the field trip method. All three groups followed the marine biology course content as specified by Florida Student Performance Objectives and Frameworks. The intervention occurred for ten months with each group participating in outside-of-classroom activities on a trimonthly basis. Analysis of covariance procedures were used to determine treatment effects. F-ratios, p-levels and t-tests at p $<$.0062 (.05/8) indicated that a significant difference existed among the three treatment groups. Findings indicated that groups one and two were significantly different from group three with group one displaying significantly higher results than group two. There were no significant differences between males and females in performance on the five dependent variables. The tenets underlying environmental education are congruent with the recommendations toward the reform of science education. These include a value analysis approach, inquiry methods, and critical thinking strategies that are applied to environmental issues. ^
Resumo:
Objective To explore the characteristics of regional distribution of cancer deaths in Shandong Province with the principle components analysis. Methods The principle components analysis with co-variance matrix for age-adjusted mortality rates and percentages of 20 types of cancer in 22 counties (cities) were carried out using SAS Software. Results Over 90% of the total information could be reflected by the top 3 principle components and the first principle component alone represented more than half of the overall regional variances. The first component mainly reflected the area differences of esophageal cancer. The second component mainly reflected the area differences of lung cancer, stomach cancer and liver cancer. The value of the first principal component scores showed a clear trend that the west areas possessed higher values and the east the lower values. Based on the top two components,the 22 counties (cities) could be divided into several geographical clusters. Conclusion The overall difference of regional distribution of cancers in Shandong is dominated by several major cancers including esophageal cancer, lung cancer, stomach cancer and liver cancer. Among them,esophageal cancer makes the largest contribution. If the range of counties (cities) analyzed could be further widened, the characteristics of regional distribution of cancer mortality would be better examined. Abstract in Chinese 目的 利用主成分分析探讨山东省恶性肿瘤死亡的地区分布特征. 方法 利用SAS软件对山东省22个县市区2004~2006午的20种恶性肿瘤标化死亡率和构成比分别进行协方差矩阵主成分分析. 结果 前3个主成分就反映了总体差异90%以上的信息,其中仅第1主成分就提供了总体差异一半以上的信息.第1主成分主要反映了食管癌的地区差异,第2主成分主要反映肺癌的地区差异,兼顾胃癌和肝癌.各地区第1主成分得分呈现西高东低的趋势,根据第1和第2主成分可以将调查地区分为若干类别,表现为明显的地理聚集性. 结论 山东省各地区恶性肿瘤死亡的总体差异主要取决于少数高发肿瘤,包括食管癌、肺癌、胃癌、肝癌等,其中以食管癌地位最为突出.如能进一步扩大分析范围,可更好地查明恶性肿瘤死亡的地区特征.
Resumo:
The Coulomb explosion of ammonia clusters induced by nanosecond laser at 532 not with an intensity of similar to 10(12) Wcm(-2) has been studied by time of flight mass spectrometry. The dominant multiply charged ions are N3+ and N2+ with kinetic energies of 110 and 50 eV respectively. The electrons generated from the multiphoton ionization are heated through inverse bremsstrahlung by the laser field when colliding with neutral or ionic particles. When their energies surpass the corresponding ionization potentials of the molecules or ions, the subsequent electron impact ionization may take place thus resulting in multi-charged nitrogen ions. Covariance analysis is made to study the possible pathways of the Coulomb explosion.
Resumo:
Spectroscopic studies of complex clinical fluids have led to the application of a more holistic approach to their chemical analysis becoming more popular and widely employed. The efficient and effective interpretation of multidimensional spectroscopic data relies on many chemometric techniques and one such group of tools is represented by so-called correlation analysis methods. Typical of these techniques are two-dimensional correlation analysis and statistical total correlation spectroscopy (STOCSY). Whilst the former has largely been applied to optical spectroscopic analysis, STOCSY was developed and has been applied almost exclusively to NMR metabonomic studies. Using a 1H NMR study of human blood plasma, from subjects recovering from exhaustive exercise trials, the basic concepts and applications of these techniques are examined. Typical information from their application to NMR-based metabonomics is presented and their value in aiding interpretation of NMR data obtained from biological systems is illustrated. Major energy metabolites are identified in the NMR spectra and the dynamics of their appearance and removal from plasma during exercise recovery are illustrated and discussed. The complementary nature of two-dimensional correlation analysis and statistical total correlation spectroscopy are highlighted.
Resumo:
Coleoptera is the most diverse group of insects with over 360,000 described species divided into four suborders: Adephaga, Archostemata, Myxophaga, and Polyphaga. In this study, we present six new complete mitochondrial genome (mtgenome) descriptions, including a representative of each suborder, and analyze the evolution of mtgenomes from a comparative framework using all available coleopteran mtgenomes. We propose a modification of atypical cox1 start codons based on sequence alignment to better reflect the conservation observed across species as well as findings of TTG start codons in other genes. We also analyze tRNA-Ser(AGN) anticodons, usually GCU in arthropods, and report a conserved UCU anticodon as a possible synapomorphy across Polyphaga. We further analyze the secondary structure of tRNA-Ser(AGN) and present a consensus structure and an updated covariance model that allows tRNAscan-SE (via the COVE software package) to locate and fold these atypical tRNAs with much greater consistency. We also report secondary structure predictions for both rRNA genes based on conserved stems. All six species of beetle have the same gene order as the ancestral insect. We report noncoding DNA regions, including a small gap region of about 20 bp between tRNA-Ser(UCN) and nad1 that is present in all six genomes, and present results of a base composition analysis.
Resumo:
Information from the full diffusion tensor (DT) was used to compute voxel-wise genetic contributions to brain fiber microstructure. First, we designed a new multivariate intraclass correlation formula in the log-Euclidean framework. We then analyzed used the full multivariate structure of the tensor in a multivariate version of a voxel-wise maximum-likelihood structural equation model (SEM) that computes the variance contributions in the DTs from genetic (A), common environmental (C) and unique environmental (E) factors. Our algorithm was tested on DT images from 25 identical and 25 fraternal twin pairs. After linear and fluid registration to a mean template, we computed the intraclass correlation and Falconer's heritability statistic for several scalar DT-derived measures and for the full multivariate tensors. Covariance matrices were found from the DTs, and inputted into SEM. Analyzing the full DT enhanced the detection of A and C effects. This approach should empower imaging genetics studies that use DTI.
Resumo:
With growing population and fast urbanization in Australia, it is a challenging task to maintain our water quality. It is essential to develop an appropriate statistical methodology in analyzing water quality data in order to draw valid conclusions and hence provide useful advices in water management. This paper is to develop robust rank-based procedures for analyzing nonnormally distributed data collected over time at different sites. To take account of temporal correlations of the observations within sites, we consider the optimally combined estimating functions proposed by Wang and Zhu (Biometrika, 93:459-464, 2006) which leads to more efficient parameter estimation. Furthermore, we apply the induced smoothing method to reduce the computational burden. Smoothing leads to easy calculation of the parameter estimates and their variance-covariance matrix. Analysis of water quality data from Total Iron and Total Cyanophytes shows the differences between the traditional generalized linear mixed models and rank regression models. Our analysis also demonstrates the advantages of the rank regression models for analyzing nonnormal data.
Resumo:
We consider rank regression for clustered data analysis and investigate the induced smoothing method for obtaining the asymptotic covariance matrices of the parameter estimators. We prove that the induced estimating functions are asymptotically unbiased and the resulting estimators are strongly consistent and asymptotically normal. The induced smoothing approach provides an effective way for obtaining asymptotic covariance matrices for between- and within-cluster estimators and for a combined estimator to take account of within-cluster correlations. We also carry out extensive simulation studies to assess the performance of different estimators. The proposed methodology is substantially Much faster in computation and more stable in numerical results than the existing methods. We apply the proposed methodology to a dataset from a randomized clinical trial.
Resumo:
We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation.
Resumo:
We consider the analysis of longitudinal data when the covariance function is modeled by additional parameters to the mean parameters. In general, inconsistent estimators of the covariance (variance/correlation) parameters will be produced when the "working" correlation matrix is misspecified, which may result in great loss of efficiency of the mean parameter estimators (albeit the consistency is preserved). We consider using different "Working" correlation models for the variance and the mean parameters. In particular, we find that an independence working model should be used for estimating the variance parameters to ensure their consistency in case the correlation structure is misspecified. The designated "working" correlation matrices should be used for estimating the mean and the correlation parameters to attain high efficiency for estimating the mean parameters. Simulation studies indicate that the proposed algorithm performs very well. We also applied different estimation procedures to a data set from a clinical trial for illustration.