975 resultados para amphotericin B deoxycholate
Resumo:
Objective: To compare the feasibility of treatment, safety, and toxicity of intravenous amphotericin B deoxycholate prepared in either glucose or intralipid for empirical antimycotic treatment of neutropenic cancer patients.
Resumo:
Amphotericin B (AmB) is widely used in the treatment of systemic fungal infections, despite its toxic effects. Nephrotoxicity, ascribed as the most serious toxic effect, has been related to the state of aggregation of the antibiotic. In search of the increase in AmB antifungal activity associated with low toxicity, several AmB-amphiphile formulations have been proposed. This work focuses on the structural characterization of a specific AmB formulation: AmB associated with sonicated dioctadecyl dimethylammonium bromide (DODAB) aggregates. Here, it was confirmed that sonicated DODAB dispersion is constituted by DODAB bicelles, and that monomeric AmB is much more soluble in bicelles than in DODAB vesicles. A new optical parameter is proposed for the estimation of the relative amount of amphiphile-bound monomeric AmB. With theoretical simulations of the spectra of spin labels incorporated in DODAB bicelles it was possible to prove that monomeric AmB binds preferentially to lipids located at the edges of DODAB bicelles, rigidifying them, and decreasing the polarity of the region. That special binding of monomeric AmB along the borders of bicelles, where the lipids are highly disorganized, could be used in the formulation of other carriers for the antibiotic, including mixtures of natural lipids which are known to form bicelles. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^
Resumo:
Molecular dynamics simulation studies on polyene antifungal antibiotic amphotericin B, its head-to-tail dimeric structure and lipid - amphotericin B complex demonstrate interesting features of the flexibilities within the molecule and define the optimal interactions for the formation of a stable dimeric structure and complex with phospholipid.
Resumo:
We report in this paper the aggregation properties of amphotericin-B (amp-B) in solution using CD and 1H-NMR techniques. Our results indicate that the preferred structure of amp-B in dimethylsulfoxide is a monomer at low concentrations (10−4M and below) and a stable dimer at higher concentrations (range 5 · 103 M to 10−2M). In a DMSO/ethanol mixture (1:1 (v/v)), the antibiotic is monomeric, irrespective of the concentration within the range studied. We propose a head-to-tail model based on NMR data. An understanding of the head-to-tail dimer, is, we believe important, particularly in view of the recent report wherein it is proposed that the drug inserts into bilayers as head-to-tail oligomers.
Resumo:
The interactions between the polyene antibiotic amphotericin B with dipalmitoylphosphatidylcholine were investigated in vesicles (using circular dichroism) and in chloroform solution (using circular dichroism and IH, I3C, and 31P nuclear magnetic resonance). The results show that amphotericin B readily aggregates in vesicles and that the extent of aggregation depends on the 1ipid:drug concentration ratio. Introduction of sterol molecules into the membrane hastens the process of aggregation of amphotericin B. In chloroform solutions amphotericin B strongly interacts with phospholipid molecules to form a stoichiometric complex. The results suggest that there are interactions between the conjugated heptene stretch of amphotericin B and the methylene groups of lipid acyl chains, while the sugar moiety interacts with the phosphate head group by the formation of a hydrogen bond. A model is proposed for the lipid-amphotericin B complex, in which amphotericin B interacts equally well with the two lipid acyl chains, forming a 1:l complex.
Resumo:
A esporotricose é uma micose subcutânea, crônica, causada por espécies termo-dimórficas do complexo Sporothrix schenckii. Esta micose apresenta diferentes manifestações clínicas sendo mais comum a forma linfocutânea. Casos graves causados por Sporothrix brasiliensis têm sido descritos recentemente, exigindo um tratamento prolongado com antifúngicos de alta toxicidade como a anfotericina B-desoxicolato ou suas versões menos tóxicas, mas de alto custo. Neste trabalho visamos testar in vitro e in vivo a eficácia de uma nova formulação intravenosa de anfotericina B poliagregada (P-AmB) e testar in vivo sua versão semi-sólida (AmB tópica), comparando-a com o itraconazol (ITC) e a anfotericina B-desoxicolato (D-AmB). Ensaios de susceptibilidade in vitro com S. brasiliensis mostraram que esta espécie é suscetível aos antifúngicos testados. Para os testes de eficácia in vivo foram estabelecidos um modelo de esporotricose disseminada e outro de esporotricose subcutânea, causados por S. brasiliensis. No modelo de esporotricose disseminada camundongos BALB/c foram inoculados intravenosamente com leveduras de S. brasiliensis e, 72 h pós-infecção, tratados sob diferentes regimes terapêuticos: i) uma monoterapia de ITC, D-AmB ou P-AmB; ii) uma combinação terapêutica entre D-AmB e ITC ou P-AmB e ITC; iii) um regime de pulso com D-AmB ou P-AmB. A sobrevivência (n= nove) e a carga fúngica em órgãos internos (n= três, no mínimo) foram avaliadas, sendo observado que o regime de pulso com D-AmB ou P-AmB foi o mais efetivo em prolongar a sobrevivência dos animais e reduzir a carga fúngica nos órgãos, seguido pela combinação terapêutica, porém o tratamento com D-AmB e ITC foi a combinação mais efetiva. A monoterapia com ITC e P-AmB e D-AmB foram menos eficazes, sendo corroborados pelas análises histopatológicas. Ensaios de toxicidade in vivo com as diferentes drogas revelaram que ITC e D-AmB induziram a uma toxicidade hepática e renal nos animais, respectivamente, mas P-AmB não induziu a nenhuma toxicidade. Nos ensaios de citoxicidade in vitro foi observado que ITC foi a menos citotóxica e hemolítica e a mais seletiva das drogas testadas, seguida por P-AmB, que foi menos citotóxica e mais seletiva que D-AmB. No modelo de esporotricose subcutânea camundongos da mesma linhagem foram inoculados por via subcutânea com conídios de S. schenckii e de S. brasiliensis (n=9/ grupo). Os animais infectados com S. brasiliensis apresentaram regressão das lesões primárias e disseminação. Usando o modelo de esporotricose subcutânea murina causada por S. brasiliensis testamos peliminarmente a formulação tópica de AmB poliagregada, que reduziu a extensão das lesões de animais infectados. Este é o primeiro trabalho a avaliar diferentes regimes de tratamento da esporotricose disseminada murina causada por S. brasiliensis utilizando ITC, D-AmB e uma nova formulação menos tóxica de anfotericina B poliagregada. O estudo revelou que o regime de pulso foi o mais eficaz para as formulações intravenosas de AmB. Nosso estudo também estabeleceu pioneiramente um modelo de esporotricose subcutânea induzido por S. brasiliensis, que se revelou uma ferramenta útil para comparar a virulência das espécies do complexo S. schenckii e para testar a eficácia de antifúngicos contra essas novas espécies.
Resumo:
Amphotericin B (AmB) is a popular drug frequently applied in the treatment of systemic fungal infections. In the presence of ruthenium (II) as the maker ion, the behavior of AmB to form ion channels in sterol-free and cholesterol- or ergosterol-containing supported phosphatidylcholine bilayer model membranes were studied by cyclic votammetry, AC impedance spectroscopy, and UV/visible absorbance spectroscopy. Different concentrations of AmB ranging from a molecularly dispersed to a highly aggregated state of the drug were investigated. In a fixed cholesterol or ergosterol content (5 mol %) in glassy carbon electrode-supported model membranes, our results showed that no matter what form of AmB, monomeric or aggregated, AmB could form ion channels in supported ergosterol-containing phosphatidylcholine bilayer model membranes. However, AmB could not form ion channels in its monomeric form in sterol-free and cholesterol-containing supported model membranes. On the one hand, when AmB is present as an aggregated state, it can form ion channels in cholesterol-containing supported model membranes; on the other hand, only when AmB is present as a relatively highly aggregated state can it form ion channels in sterol-free supported phosphatidylcholine bilayer model membranes. The results showed that the state of AmB played an important role in forming ion channels in sterol-free and cholesterol-containing supported phosphatidylcholine bilayer model membranes.
Resumo:
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution.
Resumo:
The therapeutic efficacy of amphotericin B and voriconazole alone and in combination with one another were evaluated in immunodeficient mice (BALB/c-SCID) infected with a fluconazole-resistant strain of Cryptococcus neoformans var. grubii. The animals were infected intravenously with 3 x 10(5) cells and intraperitoneally treated with amphotericin B (1.5 mg/kg/day) in combination with voriconazole (40 mg/kg/days). Treatment began 1 day after inoculation and continued for 7 and 15 days post-inoculation. The treatments were evaluated by survival curves and yeast quantification (CFUs) in brain and lung tissues. Treatments for 15 days significantly promoted the survival of the animals compared to the control groups. Our results indicated that amphotericin B was effective in assuring longest-term survival of infected animals, but these animals still harbored the highest CFU of C. neoformans in lungs and brain at the end of the experiment. Voriconazole was not as effective alone, but in combination with amphotericin B, it prolonged survival for the second-longest time period and provided the lowest colonization of target organs by the fungus. None of the treatments were effective in complete eradication of the fungus in mice lungs and brain at the end of the experiment.
Resumo:
Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.
Resumo:
We studied the effects of Amphotericin B (AmB) on Cryptococcus neoformans using different viability methods (CFUs enumeration, XTT assay and propidium iodide permeability). After 1 h of incubation, there were no viable colonies when the cells were exposed to AmB concentrations >= 1 mg/L. In the same conditions, the cells did not become permeable to propidium iodide, a phenomenon that was not observed until 3 h of incubation. When viability was measured in parallel using XTT assay, a result consistent with the CFUs was obtained, although we also observed a paradoxical effect in which at high AmB concentrations, a higher XTT reduction was measured than at intermediate AmB concentrations. This paradoxical effect was not observed after 3 h of incubation with AmB, and lack of XTT reduction was observed at AmB concentrations higher than 1 mg/L. When stained with dihydrofluorescein, AmB induced a strong intracellular oxidative burst. Consistent with oxidative damage, AmB induced protein carbonylation. Our results indicate that in C. neoformans, Amphotericin B causes intracellular damage mediated through the production of free radicals before damage on the cell membrane, measured by propidium iodide uptake. (C) 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)