991 resultados para amorphous structures
Resumo:
Different amorphous structures have been induced in monocrystalline silicon by high pressure in indentation and polishing. Through the use of high-resolution transmission electron microscopy and nanodiffraction, it was found that the structures of amorphous silicon formed at slow and fast loading/unloading rates are dissimilar and inherit the nearest-neighbor distance of the crystal in which they are formed. The results are in good agreement with recent theoretical predictions. (C) 2004 American Institute of Physics.
Resumo:
Alkali tantalates and niobates, including K(Ta / Nb)O3, Li(Ta / Nb)O3 and Na(Ta / Nb)O3, are a very promising ferroic family of lead-free compounds with perovskite-like structures. Their versatile properties make them potentially interesting for current and future application in microelectronics, photocatalysis, energy and biomedics. Among them potassium tantalate, KTaO3 (KTO), has been raising interest as an alternative for the well-known strontium titanate, SrTiO3 (STO). KTO is a perovskite oxide with a quantum paraelectric behaviour when electrically stimulated and a highly polarizable lattice, giving opportunity to tailor its properties via external or internal stimuli. However problems related with the fabrication of either bulk or 2D nanostructures makes KTO not yet a viable alternative to STO. Within this context and to contribute scientifically to the leverage tantalate based compounds applications, the main goals of this thesis are: i) to produce and characterise thin films of alkali tantalates by chemical solution deposition on rigid Si based substrates, at reduced temperatures to be compatible with Si technology, ii) to fulfil scientific knowledge gaps in these relevant functional materials related to their energetics and ii) to exploit alternative applications for alkali tantalates, as photocatalysis. In what concerns the synthesis attention was given to the understanding of the phase formation in potassium tantalate synthesized via distinct routes, to control the crystallization of desired perovskite structure and to avoid low temperature pyrochlore or K-deficient phases. The phase formation process in alkali tantalates is far from being deeply analysed, as in the case of Pb-containing perovskites, therefore the work was initially focused on the process-phase relationship to identify the driving forces responsible to regulate the synthesis. Comparison of phase formation paths in conventional solid-state reaction and sol-gel method was conducted. The structural analyses revealed that intermediate pyrochlore K2Ta2O6 structure is not formed at any stage of the reaction using conventional solid-state reaction. On the other hand in the solution based processes, as alkoxide-based route, the crystallization of the perovskite occurs through the intermediate pyrochlore phase; at low temperatures pyrochlore is dominant and it is transformed to perovskite at >800 °C. The kinetic analysis carried out by using Johnson-MehlAvrami-Kolmogorow model and quantitative X-ray diffraction (XRD) demonstrated that in sol-gel derived powders the crystallization occurs in two stages: i) at early stage of the reaction dominated by primary nucleation, the mechanism is phase-boundary controlled, and ii) at the second stage the low value of Avrami exponent, n ~ 0.3, does not follow any reported category, thus not permitting an easy identification of the mechanism. Then, in collaboration with Prof. Alexandra Navrotsky group from the University of California at Davis (USA), thermodynamic studies were conducted, using high temperature oxide melt solution calorimetry. The enthalpies of formation of three structures: pyrochlore, perovskite and tetragonal tungsten bronze K6Ta10.8O30 (TTB) were calculated. The enthalpies of formation from corresponding oxides, ∆Hfox, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -203.63 ± 2.84 kJ/mol, - 358.02 ± 3.74 kJ/mol, and -1252.34 ± 10.10 kJ/mol, respectively, whereas from elements, ∆Hfel, for KTaO3, KTa2.2O6 and K6Ta10.8O30 are -1408.96 ± 3.73 kJ/mol, -2790.82 ± 6.06 kJ/mol, and -13393.04 ± 31.15 kJ/mol, respectively. The possible decomposition reactions of K-deficient KTa2.2O6 pyrochlore to KTaO3 perovskite and Ta2O5 (reaction 1) or to TTB K6Ta10.8O30 and Ta2O5 (reaction 2) were proposed, and the enthalpies were calculated to be 308.79 ± 4.41 kJ/mol and 895.79 ± 8.64 kJ/mol for reaction 1 and reaction 2, respectively. The reactions are strongly endothermic, indicating that these decompositions are energetically unfavourable, since it is unlikely that any entropy term could override such a large positive enthalpy. The energetic studies prove that pyrochlore is energetically more stable phase than perovskite at low temperature. Thus, the local order of the amorphous precipitates drives the crystallization into the most favourable structure that is the pyrochlore one with similar local organization; the distance between nearest neighbours in the amorphous or short-range ordered phase is very close to that in pyrochlore. Taking into account the stoichiometric deviation in KTO system, the selection of the most appropriate fabrication / deposition technique in thin films technology is a key issue, especially concerning complex ferroelectric oxides. Chemical solution deposition has been widely reported as a processing method to growth KTO thin films, but classical alkoxide route allows to crystallize perovskite phase at temperatures >800 °C, while the temperature endurance of platinized Si wafers is ~700 °C. Therefore, alternative diol-based routes, with distinct potassium carboxylate precursors, was developed aiming to stabilize the precursor solution, to avoid using toxic solvents and to decrease the crystallization temperature of the perovskite phase. Studies on powders revealed that in the case of KTOac (solution based on potassium acetate), a mixture of perovskite and pyrochlore phases is detected at temperature as low as 450 °C, and gradual transformation into monophasic perovskite structure occurs as temperature increases up to 750 °C, however the desired monophasic KTaO3 perovskite phase is not achieved. In the case of KTOacac (solution with potassium acetylacetonate), a broad peak is detected at temperatures <650 °C, characteristic of amorphous structures, while at higher temperatures diffraction lines from pyrochlore and perovskite phases are visible and a monophasic perovskite KTaO3 is formed at >700 °C. Infrared analysis indicated that the differences are due to a strong deformation of the carbonate-based structures upon heating. A series of thin films of alkali tantalates were spin-coated onto Si-based substrates using diol-based routes. Interestingly, monophasic perovskite KTaO3 films deposited using KTOacac solution were obtained at temperature as low as 650 °C; films were annealed in rapid thermal furnace in oxygen atmosphere for 5 min with heating rate 30 °C/sec. Other compositions of the tantalum based system as LiTaO3 (LTO) and NaTaO3 (NTO), were successfully derived as well, onto Si substrates at 650 °C as well. The ferroelectric character of LTO at room temperature was proved. Some of dielectric properties of KTO could not be measured in parallel capacitor configuration due to either substrate-film or filmelectrode interfaces. Thus, further studies have to be conducted to overcome this issue. Application-oriented studies have also been conducted; two case studies: i) photocatalytic activity of alkali tantalates and niobates for decomposition of pollutant, and ii) bioactivity of alkali tantalate ferroelectric films as functional coatings for bone regeneration. Much attention has been recently paid to develop new type of photocatalytic materials, and tantalum and niobium oxide based compositions have demonstrated to be active photocatalysts for water splitting due to high potential of the conduction bands. Thus, various powders of alkali tantalates and niobates families were tested as catalysts for methylene blue degradation. Results showed promising activities for some of the tested compounds, and KNbO3 is the most active among them, reaching over 50 % degradation of the dye after 7 h under UVA exposure. However further modifications of powders can improve the performance. In the context of bone regeneration, it is important to have platforms that with appropriate stimuli can support the attachment and direct the growth, proliferation and differentiation of the cells. In lieu of this here we exploited an alternative strategy for bone implants or repairs, based on charged mediating signals for bone regeneration. This strategy includes coating metallic 316L-type stainless steel (316L-SST) substrates with charged, functionalized via electrical charging or UV-light irradiation, ferroelectric LiTaO3 layers. It was demonstrated that the formation of surface calcium phosphates and protein adsorption is considerably enhanced for 316L-SST functionalized ferroelectric coatings. Our approach can be viewed as a set of guidelines for the development of platforms electrically functionalized that can stimulate tissue regeneration promoting direct integration of the implant in the host tissue by bone ingrowth and, hence contributing ultimately to reduce implant failure.
Resumo:
In this paper, to understand the roles of amorphous structures which were observed within the viromatrix of Rana grylio virus (RGV), an improved immunoelectron microscopy (IEM) method was developed to detect the localization of RGV in carp Epithelipma papulosum cyprinid (EPC) cells. Infected EPC cells were fixed with 4% paraformaldehyde-0.25% glutaraldehyde mixture, dehydrated completely, and embedded in LR White resin. This method allowed good ultrastructural preservation and specific labeling with anti-RGV antibodies. The results of IEM showed that colloidal gold mainly bound to the capsids of viral particles at the stage of viral assembly, while during the viral maturation colloidal gold bound to the envelop of virions. In addition, within the viromatrix, the amorphous structures, including dense floccules, membranous materials and tubules, also had strong colloidal gold signals, revealing that those amorphous structures were participated in RGV assembly. In contrast, no significant gold labeling signals were obtained in negative controls. The present study not only provided further evidence that amorphous structures within the viromatrix were involved in the process of RGV assembly, but also developed an improved IEM method for studying the interaction between iridovirus and host cells. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Rana grylio virus (RGV), a Ranavirus belonging to the family Iridoviridae, assembles in the viromatrix which is a factory for viral genome replication and particle assembly. Ultrastructural studies of the viromatrix will clarify the pathway of assembly. The viromatrix and quantitative changes in RGV infected epithelipma papulosum cyprini (EPC) cells, one of fish cell lines, were studied by electron microscopy. It was shown that viromatrices were adjacent to the nucleus, and the electron density was lower than that of the surrounding cytoplasm. The viromatrix contained virus particles with different forms, electron-dense materials and amorphous structures which included tubules and membranous materials. Tubules were often observed in direct continuity with empty capsids. Several bundles of intermediate filaments were seen alongside the viromatrix and crystalline aggregates. Large clusters of mitochondria occurred in proximity to viromatrix. A total of 990 cells profiles were examined. The results showed that 394 cells contained viromatrix: 89.3% contained one, and 10.7% contained two to four viromatrices. The number of viromatrices increased gradually and reached a peak at 16 h p.i. The viromatrix area at 24 h p.i. increased up to 7.4 +/- 0.69 mu m(2) which was three-times lower than that at 6 h p.i. The number of empty capsids within viromatrix was generally more than that of "full" particles at different time points, and there was a strong positive correlation between them. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
While the thermodynamic nonequilibrium properties of nanoparticles are being extensively studied, the thermodynamic nonequilibrium properties of their counterpart: nanocavities, however, are less noticed. Here, we systematically review and comprehensively model the recently published results on the newly-found thermodynamic nonequilibriurn properties of nanocavities in covalently bound materials during energetic beam irradiation. We also review and model the thermodynamic nonequilibrium properties of nanoparticles. The review and modelling not only demonstrates the novel nonequilibriurn properties of such an open-volume nanostructure during external excitation but also gives a deep insight into the nonequilibrium thermodynamics of amorphous structures and the difference in the behaviours of defects in crystalline and in amorphous silicon. Especially, the review and modelling leads to two new concepts:anti-symmetry relation between a nanoparticle and a nanocavity;energetic beam induced-soft mode and lattice instability in condensed matter;which reveals that structure of a condensed matter would be unstable not only at nanosize scale but also at a nanotime scale in general. It is also reveals that such nanoinstabilities would be more pronounced in an amorphous structure than in a crystalline structure.
Resumo:
Composite membranes based on Sulfonated poly(ether ether ketone) (SPEEK) and sulfonated organically modified Si-SBA-15 (S-SBA-15) were investigated with the purpose of increasing the proton conductivity. The novelty of the composite membranes was attributed to two special structures and different ion exchange capacities (IEC) of S-SBA-15 fillers, which were embedded in membranes. The typical hexagonal channels array of S-SBA-15 was confirmed by XRD and TEM. The regular vermiculate and amorphous structures of the inorganic fillers were proved by SEM. Composite membranes were prepared through common solvent casting method. SEM images indicated that the inorganic filler with regular structure dispersed homogeneously in the composite membranes, but the amorphous filler caused an agglomeration phenomenon at the same loading content.
Resumo:
Development of functional foods with bioactive components requires component stability in foods and ingredients. Stabilization of sensitive bioactive components can be achieved by entrapment or encapsulation of these components in solid food matrices. Lactose or trehalose was used as the structure-forming material for the entrapment of hydrophilic ascorbic acid and thiamine hydrochloride or the encapsulation of oil particles containing hydrophobic α-tocopherol. In the delivery of hydrophobic components, milk protein isolate, soy protein isolate, or whey protein isolate were used as emulsifiers and, in some cases, applied in excess amount to form matrices together with sugars. Dehydrated amorphous structures with bioactives were produced by freezing and freeze-drying. Experimental results indicated that: (i) lactose and trehalose showed similar water sorption and glass transition but very different crystallization behavior as pure sugars; (ii) the glass transition of sugar-based systems was slightly affected by the presence of other components in anhydrous systems but followed closely that of sugar after water plasticization; (iii) sugar crystallization in mixture systems was composition-dependent; (iv) the stability of bioactives was better retained in the amorphous matrices, although small losses of stability were observed for hydrophilic components above glass transition and for hydrophobic components as a function of water activity; (v) sugar crystallization caused significant loss of hydrophilic bioactives as a result of the exclusion from the continuous crystalline phase; (vi) loss of hydrophobic bioactives upon sugar crystallization was a result of dramatic change of emulsion properties and the exclusion of oil particles from the protecting structure; (vii) the double layers at the hydrophilic-hydrophobic interfaces improved the stability of hydrophobic bioactives in dehydrated systems. The present study provides information on the physical and chemical stability of sugar-based dehydrated delivery systems, which could be helpful in designing foods and ingredients containing bioactive components with improved storage stability.
Resumo:
Major ampullate silk fibers of orb web-weaving spiders have impressive mechanical properties due to the fact that the underlying proteins partially fold into helical/amorphous structures, yielding relatively elastic matrices that are toughened by anisotropic nanoparticulate inclusions (formed from stacks of beta-sheets of the same proteins). In vivo the transition from soluble protein to solid fibers involves a combination of chemical and mechanical stimuli (such as ion exchange, extraction of water and shear forces). Here we elucidate the effects of such stimuli on the in vitro aggregation of engineered and recombinantly produced major ampullate silk-like proteins (focusing on structure-function relationships with respect to their primary structures), and discuss their relevance to the storage and assembly of spider silk proteins in vivo. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The optical and carrier transport properties of amorphous transparent zinc indium tin oxide (ZITO)(a-ZITO) thin films and the characteristics of the thin-film transistors TFTs were examined as a function of chemical composition. The as-deposited films were very conductive and showed clear free carrier absorption FCA . The analysis of the FCA gave the effective mass value of 0.53 me and a momentum relaxation time of 3.9 fs for an a-ZITO film with Zn:In:Sn = 0.35:0.35:0.3. TFTs with the as-deposited channels did not show current modulation due to the high carrier density in the channels. Thermal annealing at 300°C decreased the carrier density and TFTs fabricated with the annealed channels operated with positive threshold voltages VT when Zn contents were 25 atom % or larger. VT shifted to larger negative values, and subthreshold voltage swing increased with decreasing the Zn content, while large on–off current ratios 107–108 were kept for all the Zn contents. The field effect mobilities ranged from 12.4 to 3.4 cm2 V−1 s−1 for the TFTs with Zn contents varying from 5 to 48 atom %. The role of Zn content is also discussed in relation to the carrier transport properties and amorphous structures.
Resumo:
A eficiência da técnica de cultura de anteras, em escala comercial, ainda pode ser considerada baixa quando medida em número de plantas duplo-haplóides férteis obtidas para cada antera estabelecida in vitro. Dessa forma, o presente trabalho é pioneiro no estudo detalhado da embriogênese in vitro do micrósporo e do grão de pólen de cevada (Hordeum vulgare L. ssp. vulgare). Com o objetivo de contribuir para o aperfeiçoamento da técnica de cultura de anteras foi analisada a embriogênese, com especial ênfase na etapa da indução, através de análises citológicas e histológicas de anteras cultivadas in vitro. Foram analisadas uma cultivar brasileira de cevada, em comparação com linhagens de duas outras cultivares brasileiras, que foram selecionadas, por seleção divergente para maior ou para menor resposta na indução da rota embriogênica e, respectivamente, para menor ou para maior capacidade de regenerar plântulas verdes. Somente foram estabelecidas em cultivo in vitro as anteras que apresentaram micrósporos e pólens jovens, das linhagens selecionadas da cultivar A-05 (S3A22 e S3A23), e da cultivar BR-2(S3B63 e, apenas na cultura de anteras, S3B61), bem como da cultivar MN-599 (nãoselecionada). Para as análises histológicas, foram fixadas, a cada dois dias, duas anteras, correspondentes a cada fileira da mesma espiga, após o início do cultivo in vitro. As anteras em cultivo e respectivas estruturas multicelulares foram fixadas em FAA 50%, desidratadas em série etílica e incluídas em hidroxietilmetacrilato. Os blocos de resina polimerizada foram secionados longitudinalmente com 3 mm de espessura. Para as análises citológicas foram fixadas, de cada espiga recém-coletada, três espiguetas sendo uma da base, outra do meio e outra do ápice. Após o pré-tratamento à baixa temperatura (5 °C), porém antes do cultivo in vitro, foram fixadas três anteras (amostras utilizadas como controles). A cada três dias, durante o cultivo, três anteras foram fixadas (até 18 dias). As anteras em cultivo e estruturas multicelulares foram fixadas em Farmer e FAA 50%, transferidas após 24 horas para etanol 70%. Na cultura in vitro das anteras houve diferenças entre uma das linhagens da cultivar A-05 em relação a cultivar MN- 599, na produção inicial de estruturas embriogênicas, diferença que desapareceu na produção total. Entretanto, houve diferenças na formação dos xiii embriões: a cv.MN-599 formou embriões bem diferenciados ao passo que a linhagem S3A22 produziu um número aparentemente menor, sendo que os embriões não eram bem diferenciados. A linhagem S3B63 não apresentou embriões até o final da análise histológica. Considerando que a amostra dessa linhagem, mantida em cultura, formou plantas verdes, pode-se propor que a formação de embriões deve ocorrer posteriormente ao desenvolvimento da cv.MN-599. Cabe destacar que houve diferenças significativas entre as cultivares A-05 e BR-2 quanto à regeneração de plântulas verdes. Esses resultados indicam ter havido maior eficiência da seleção em relação à etapa da regeneração. Com relação às categorias classificatórias dos micrósporos e grãos de pólen, constatou-se que desde o início da análise histológica (2o dia de cultivo in vitro) até o final (34o dia), foram observados micrósporos, o mesmo tendo sido observado na análise citológica. Os grãos de pólen multinucleados ocorreram praticamente em todo o período de cultivo in vitro, em ambas análises; não ocorrendo nos controles da citologia (antes do cultivo); os multinucleados foram observados a partir do 3o dia, enquanto que os multicelulares a partir do 4o dia de cultivo. As estruturas multicelulares foram observadas a partir do 8o dia. A quantidade e o tamanho das estruturas multicelulares foram variáveis ao longo da análise histológica, sendo que do 14o ao 20o dia foram encontradas as de maiores dimensões, resultantes da proliferação celular por mitoses sucessivas. A partir do 22o dia (cultivar MN- 599), a ocorrência de estruturas multicelulares no interior dos lóculos da antera diminuiu, predominando o processo de proliferação externo às anteras. Para as linhagens, a partir do 18o dia foram observadas estruturas multicelulares liberadas das anteras. A análise das estruturas multicelulares permitiu classificá-las em quatro categorias: 1. SFD: Sem forma definida; 2. MAC: meristema apical caulinar; 3. MAR: meristema apical radical embrionário adventício; e 4. Embriões. As estruturas amorfas apareceram em maior número, quando comparadas com as outras categorias. Em síntese: as linhagens selecionadas e a cultivar diferiram não apenas no tempo necessário para a formação dos embriões, mas também no desenvolvimento dos mesmos, que foi mais diferenciado na cultivar MN-599, porém sendo observados mais cedo na linhagem S3A22 e S3A23, do que na cultivar MN-599.
Resumo:
Glasses and glass-ceramics have been obtained in oxyfluoride systems involving lead and cadmium fluorides and one of the well-known glass former oxides SiO2, B2O3 and TeO2. Vitreous domains were established and a wide range of compositions including high heavy metal contents lead to stable glasses. Amorphous structures have been studied by short-range order spectroscopy techniques (Raman scattering and x-ray absorption) and molecular basic structures have been identified. Besides the usual oxides, the role of glass former could also be proposed for cadmium ions. Special attention has been paid for crystallization process. Cubic lead fluoride, cubic lead tellurite, tetragonal tellurium oxide and a solid solution of the type Pb1-xCdxF2 are obtained as crystallization products depending on the composition and temperature of heat treatments. Pb1-xCdxF2 solid solutions are well known superionic materials and obtaining this solid solution as a crystal phase could be very interesting for applications concerning ionic electrical conduction properties. The addition of rare earth ions led to the control of the crystallization process. In the presence of the nucleating ion only the cubic form beta-PbF2 was identified. Rare earth ions are present in the crystal phase and crystal-like spectroscopic properties were observed suggesting interesting applications for these perfectly transparent glass ceramics in photonics.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We have studied the nonlinear optical properties of nanolayered Se/As2S3 film with a modulation period of 10 nm and a total thickness of 1.15 mu m at two [1064 nm (8 ns) and 800 nm (20 ps)] wavelengths using the standard Z-scan technique. Three-photon absorption was observed at off-resonant excitation and saturation of two-photon absorption at quasiresonant excitation. The observation of the saturation of two-photon absorption is because the pulse duration is shorter than the thermalization time of the photocreated carriers in their bands and three-photon absorption is due to high excitation irradiance. (c) 2007 American Institute of Physics.
Resumo:
The development of scaffolds for neural tissue engineering application requires an understanding of cell adhesion, proliferation, and migration of neuronal cells. Considering the potential application of carbon as scaffold materials and the lack of understanding of compatibility of amorphous carbon with neuronal cells, the carbon-based materials in the forms of carbon films and continuous electrospun carbon nanofibers having average diameter of approximate to 200 nm are being investigated with or without ultraviolet (UV) and oxy-plasma (OP) treatments for cytocompatibility property using mouse Neuroblastoma (N2a) and rat Schwann cells (RT4-D6P2T). The use of Raman spectroscopy in combination with Fourier transform infrared (FTIR) and X-ray diffraction establishes the amorphous nature and surface-bonding characteristics of the studied carbon materials. Although both UV and OP treatments make carbon surfaces more hydrophilic, the cell viability of N2a cells is statistically more significant on OP treated fibers/films compared to UV fiber/film substrates after 4 days in culture. The electrospun carbon fibrous substrate provides the physical guidance to the cultured Schwann cells. Overall, the experimental results of this study demonstrate that the electrospun amorphous carbon nanofibrous scaffolds can be used as a suitable biomaterial substrate for supporting cell adhesion and proliferation of neuronal cells in the context of their applications as artificial nerve implants. (c) 2013 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2013.