903 resultados para amine precursor uptake and decarboxylation
Resumo:
Objective: the urethra is the main port of entry of sexually transmitted pathogens. However, papers on the morphology of the urethra are scarce. The Mongolian gerbil is a rodent native of the Mongolia and China and has been utilized as a laboratory animal since the 1960s. This work describes the ultrastructure of the urethra of the Mongolian gerbil to provide data for future experimental studies. Methods: the urethra of ten adult male gerbils was studied by transmission electron microscopy. Results: the epithelium of the pelvic urethra possesses two cell types: I and II, without the formation of cellular layers, while the penile urethra possesses cellular layers: basal, intermediate and superficial. The urethra presents neurosecretory cells belonging to the amine precursor uptake and decarboxylation system. Conclusions: the urethral epithelium of the gerbil is a neurosecretory epithelium, part of the amine precursor uptake and decarboxylation system.
Resumo:
Abstract: There are two types of clinical and biochemical syndromes not directly associated with the invasiveness and metastatic ability of the tumour; the first type is represented by the hormonal paraneoplastic syndromes. The second type consists of certain neurological diseases or abnormalities observed in patients with malignant tumours not directly affecting the nervous system. While the hormonal type is well established and rests on solid ground, the neurological type is less well defined and more controversial. © 1981 Pergamon Press Ltd.
Resumo:
Background Carotenoids are the most widespread group of pigments found in nature. In addition to their role in the physiology of the plant, carotenoids also have nutritional relevance as their incorporation in the human diet provides health benefits. In non-photosynthetic tissues, carotenoids are synthesized and stored in specialized plastids called chromoplasts. At present very little is known about the origin of the metabolic precursors and cofactors required to sustain the high rate of carotenoid biosynthesis in these plastids. Recent proteomic data have revealed a number of biochemical and metabolic processes potentially operating in fruit chromoplasts. However, considering that chloroplast to chromoplast differentiation is a very rapid process during fruit ripening, there is the possibility that some of the proteins identified in the proteomic analysis could represent remnants no longer having a functional role in chromoplasts. Therefore, experimental validation is necessary to prove whether these predicted processes are actually operative in chromoplasts. Results A method has been established for high-yield purification of tomato fruit chromoplasts suitable for metabolic studies. Radiolabeled precursors were efficiently incorporated and further metabolized in isolated chromoplast. Analysis of labeled lipophilic compounds has revealed that lipid biosynthesis is a very efficient process in chromoplasts, while the relatively low incorporation levels found in carotenoids suggest that lipid production may represent a competing pathway for carotenoid biosynthesis. Malate and pyruvate are efficiently converted into acetyl-CoA, in agreement with the active operation of the malic enzyme and the pyruvate dehydrogenase complex in the chromoplast. Our results have also shown that isolated chromoplasts can actively sustain anabolic processes without the exogenous supply of ATP, thus suggesting that these organelles may generate this energetic cofactor in an autonomous way. Conclusions We have set up a method for high yield purification of intact tomato fruit chromoplasts suitable for precursor uptake assays and metabolic analyses. Using targeted radiolabeled precursors we have been able to unravel novel biochemical and metabolic aspects related with carotenoid and lipid biosynthesis in tomato fruit chromoplasts. The reported chromoplast system could represent a valuable platform to address the validation and characterization of functional processes predicted from recent transcriptomic and proteomic data.
Resumo:
As a contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Cooperative LBA Airborne Regional Experiment (LBA-CLAIRE-2001) field campaign in the heart of the Amazon Basin, we analyzed the temporal and spatial dynamics of the urban plume of Manaus City during the wet-to-dry season transition period in July 2001. During the flights, we performed vertical stacks of crosswind transects in the urban outflow downwind of Manaus City, measuring a comprehensive set of trace constituents including O(3), NO, NO(2), CO, VOC, CO(2), and H(2)O. Aerosol loads were characterized by concentrations of total aerosol number (CN) and cloud condensation nuclei (CCN), and by light scattering properties. Measurements over pristine rainforest areas during the campaign showed low levels of pollution from biomass burning or industrial emissions, representative of wet season background conditions. The urban plume of Manaus City was found to be joined by plumes from power plants south of the city, all showing evidence of very strong photochemical ozone formation. One episode is discussed in detail, where a threefold increase in ozone mixing ratios within the atmospheric boundary layer occurred within a 100 km travel distance downwind of Manaus. Observation-based estimates of the ozone production rates in the plume reached 15 ppb h(-1). Within the plume core, aerosol concentrations were strongly enhanced, with Delta CN/Delta CO ratios about one order of magnitude higher than observed in Amazon biomass burning plumes. Delta CN/Delta CO ratios tended to decrease with increasing transport time, indicative of a significant reduction in particle number by coagulation, and without substantial new particle nucleation occurring within the time/space observed. While in the background atmosphere a large fraction of the total particle number served as CCN (about 60-80% at 0.6% supersaturation), the CCN/CN ratios within the plume indicated that only a small fraction (16 +/- 12 %) of the plume particles were CCN. The fresh plume aerosols showed relatively weak light scattering efficiency. The CO-normalized CCN concentrations and light scattering coefficients increased with plume age in most cases, suggesting particle growth by condensation of soluble organic or inorganic species. We used a Single Column Chemistry and Transport Model (SCM) to infer the urban pollution emission fluxes of Manaus City, implying observed mixing ratios of CO, NO(x) and VOC. The model can reproduce the temporal/spatial distribution of ozone enhancements in the Manaus plume, both with and without accounting for the distinct (high NO(x)) contribution by the power plants; this way examining the sensitivity of ozone production to changes in the emission rates of NO(x). The VOC reactivity in the Manaus region was dominated by a high burden of biogenic isoprene from the background rainforest atmosphere, and therefore NO(x) control is assumed to be the most effective ozone abatement strategy. Both observations and models show that the agglomeration of NO(x) emission sources, like power plants, in a well-arranged area can decrease the ozone production efficiency in the near field of the urban populated cores. But on the other hand remote areas downwind of the city then bear the brunt, being exposed to increased ozone production and N-deposition. The simulated maximum stomatal ozone uptake fluxes were 4 nmol m(-2) s(-1) close to Manaus, and decreased only to about 2 nmol m(-2) s(-1) within a travel distance >1500 km downwind from Manaus, clearly exceeding the critical threshold level for broadleaf trees. Likewise, the simulated N deposition close to Manaus was similar to 70 kg N ha(-1) a(-1) decreasing only to about 30 kg N ha(-1) a(-1) after three days of simulation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A tracer experiment is carried out with transgenic T (variety M 7211 RR) and non-transgenic NT (variety MSOY 8200) soybean plants to evaluate if genetic modification can influence the uptake and translocation of Fe. A chelate of EDTA with enriched stable (57)Fe is applied to the plants cultivated in vermiculite plus substrate and the (57)Fe acts as a tracer. The exposure of plants to enriched (57)Fe causes the dilution of the natural previously existing Fe in the plant compartments and then the changed Fe isotopic ratio ((57)Fe/(56)Fe) is measured using a quadrupole-based inductively coupled plasma mass spectrometer equipped with a dynamic reaction cell (DRC). Mathematical calculations based on the isotope dilution methodology allow distinguishing the natural abundance Fe from the enriched Fe (incorporated during the experiment). The NT soybean plants acquire higher amounts of Fe from natural abundance (originally present in the soil) and from enriched Fe (coming from the (57)Fe-EDTA during the experiment) than T soybean ones, demonstrating that the NT soybean plants probably absorb higher amounts of Fe, independently of the source. The percentage of newly incorporated Fe (coming from the treatment) was approximately 2.0 and 1.1% for NT and T soybean plants, respectively. A higher fraction (90.1%) of enriched Fe is translocated to upper parts, and a slightly lower fraction (3.8%) is accumulated in the stems by NT plants than by T ones (85.1%; 5.1%). Moreover, in both plants, the Fe-EDTA facilitates the transport and translocation of Fe to the leaves. The genetic modification is probably responsible for differences observed between T and NT soybean plants.
Resumo:
In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old `Valencia` sweet orange trees on `Swingle` citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.
Resumo:
Potassium (K) is an essential nutrient for higher plants. Information on K uptake and use efficiency of upland rice under Brazilian conditions is limited. A greenhouse experiment was conducted with the objective to evaluate influence of K on yield, K uptake, and use efficiency of six upland rice genotypes grown on Brazilian Oxisol. The K rate used was zero (natural soil level) and 200 mg K kg-1 of soil. Shoot dry weight and grain yield were significantly influenced by K level and genotype treatments. However, K x genotype interactions were not significant, indicating similar responses of genotypes at two K levels for shoot dry weight and grain yield. Genotypes produced grain yield in the order of BRS Primavera BRA 01596 BRSMG Curinga BRS 032033 BRS Bonanca BRA 02582. Potassium concentration in shoot was about sixfold greater compared to grain, across two K levels and six genotypes. However, K utilization efficiency ratio (KUER) (mg shoot or grain yield / mg K uptake in shoot or root) was about 6.5 times greater in grain compared to shoot, across two K level and six genotypes. Potassium uptake in shoot and grain and KUER were significantly and positively associated with grain yield. Soil calcium (Ca), K, base saturation, acidity saturation, Ca saturation, K saturation, Ca/K ratio, and magnesium (Mg)/K ratio were significantly influenced by K application rate.
Resumo:
Closantel is an anthe lmintic which associates with plasma albumin and is useful for the control of sheep parasites, such as Haemonchus contortus, that ingest blood. However, the utility of closantel for parasite control has been threatened by the emergence of resistance. The mechanisms of resistance are unknown. A closantel-resistant and a closantel-susceptible isolate of H. contortus were compared with respect to the distribution and metabolism of closantel. Neither strain appeared to metabolise closantel in vitro or in vivo. Following treatment of infected sheep with radioactively labelled closantel, isotope levels in closantel-resistant adult H. contortus were significantly lower than in susceptible worms. This reduced accumulation of drug could contribute to closantel resistance by mechanisms such as reduced feeding, failure to dissociate the drug-albumin complex in the gut or increased efflux of closantel from resistant worms. (C) 1997 Australian Society for Parasitology.
Resumo:
Leishmaniasis is a parasitic disease caused by the intramacrophage protozoa Leishmania spp. and may be fatal if left untreated. Although pentavalent antimonials are toxic and their mechanism of action is unclear, they remain the first-line drugs for treatment of leishmaniasis. An effective therapy could be achieved by delivering antileishmanial drugs to the site of infection. Compared with free drugs, antileishmanial agent-containing liposomes are more effective, less toxic and have fewer adverse side effects. The aim of this study was to develop novel meglumine antimoniate (MA)-containing liposome formulations and to analyse their antileishmanial activity and uptake by macrophages. Determination of the 50% inhibitory concentration (IC(50)) values showed that MA-containing liposomes were >= 10-fold more effective than the free drug, with a 5-fold increase in selectivity index, higher activity and reduced macrophage toxicity. The concentration required to kill 100% of intracellular amastigotes was >= 40-fold lower when MA was encapsulated in liposomes containing phosphatidylserine compared with the free drug. Fluorescence microscopy analysis revealed increased uptake of fluorescent liposomes in infected macrophages after short incubation times compared with non-infected macrophages. In conclusion, these data suggest that MA encapsulated in liposome formulations is more effective against Leishmania-infected macrophages than the non-liposomal drug. Development of liposome formulations is a valuable approach to the treatment of infectious diseases involving the mononuclear phagocyte system. (C) 2011 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Purpose In animal experiments paclitaxel oleate associated with a cholesterol-rich nanoemulsion concentrated in the neoplastic tissues and showed reduced toxicity and increased antitumor activity compared with paclitaxel-Cremophor EL. Here, a clinical study was performed in breast cancer patients to evaluate the tumoral uptake, pharmacokinetics and toxicity of paclitaxel associated to nanoemulsions. Methods Twenty-four hours before mastectomy [(3)H]paclitaxel oleate associated with [(14)C]-cholesteryl oleatenanoemulsion or [(3)H]- paclitaxel in Cremophor EL were injected into five patients for collection of blood samples and fragments of tumor and normal breast tissue. A pilot clinical study of paclitaxel-nanoemulsion administered at 3-week intervals was performed in four breast cancer patients with refractory advanced disease at 175 and 220 mg/m(2) dose levels. Results T(1/2) of paclitaxel oleate associated to the nanoemulsion was greater than that of paclitaxel (t(1/2) = 15.4 +/- 4.7 and 3.5 +/- 0.80 h). Uptake of the [(14)C]-cholesteryl ester nanoemulsion and [(3)H]- paclitaxel oleate by breast malignant tissue was threefold greater than the normal breast tissue and toxicity was minimal at the two dose levels. Conclusions Our results suggest that the paclitaxel-nanoemulsion preparation can be advantageous for use in the treatment of breast cancer because the pharmacokinetic parameters are improved, the drug is concentrated in the neoplastic tissue and the toxicity of paclitaxel is reduced.
Resumo:
The cellular uptake and antimycobacterial activity of usnic acid (UA) and usnic acid-loaded liposomes (UA-LIPOs) were assessed on J774 macrophages. The minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of UA and UA-LIPO against Mycobacterium tuberculosis were determined. Concentrations required to inhibit 50% of cell proliferation (IC(50)) were 22.5 (+/- 0.60) and 12.5 (+/- 0.26) mu g/ml, for UA and UA-LIPO, respectively. The MICs of UA and UA-LIPO were 6.5 and 5.8 mu g/mL, respectively. The MBC of UA-LIPO was twice as low (16 mu g/mL) as that of UA (32 mu g/mL). An improvement in the intracellular uptake of UA-LIPO was found (21.6 x 10(4) +/- 28.3 x 10(2) c.p.s), in comparison with UA (9.5 x 10(4) +/- 11.4 x 10(2) c.p.s). In addition, UA-LIPO remains much longer inside macrophages (30 hours). All data obtained from the encapsulation of usnic acid into liposomes as a drug delivery system (DDS) indicate a strong interaction between UA-liposomes and J774 macrophages, thereby facilitating UA penetration into cells. Considering such a process as ruling the Mycobacterium-transfection by magrophages, we could state that associating UA with this DDS leads to an improvement in its antimycobacterial activity.
Resumo:
This study evaluated the resistance to demineralization and fluoride incorporation of enamel irradiated with Er:YAG. A total of 110 bovine teeth were selected and divided into eight groups: unlased, 37% phosphoric acid, and samples irradiated with the Er:YAG laser at several fluences (31.84 J/cm(2), 25.47 J/cm(2), 19.10 J/cm(2), 2.08 J/cm(2), 1.8 J/cm(2), and 0.9 J/cm(2)). The application of acidulated phosphate fluoride was performed after treatments. All samples were immersed in 2 ml of 2.0 M acetic-acetate acid solution at pH 4.5 for 8 h, and fluoride, calcium, and phosphorus ions dissolved were analyzed by atomic absorption spectrometry and spectrophotometry. The phosphoric acid and 31.84 J/cm(2) groups presented the lowest dissolution of calcium and phosphorus ions. Higher fluoride incorporation was observed on 1.8 J/cm(2) and 0.9 J/cm(2) groups. Based on these results, Er:YAG laser was able to decrease acid dissolution and increase fluoride uptake and can be a promissory alternative for preventive dentistry.