932 resultados para aluminum doping
Resumo:
The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.
Resumo:
A custom-designed inductively coupled plasma (ICP)-assisted radio-frequency magnetron sputtering deposition system has been employed to synthesize aluminium-doped zinc oxide (ZnO:Al) nanofilms on glass substrates at room temperature. The effects of film thickness and ZnO target (partially covered by Al chips) power on the structural, electrical and optical properties of the ZnO:Al nanofilms are studied. A high growth rate (∼41 nm/min), low electrical sheet resistance (as low as 30 Ω/□) and high optical transparency (>80%) over the visible spectrum has been achieved at a film thickness of ∼615 nm and ZnO target power of 150 W. The synthesis of ZnO:Al nanofilms at room temperature and with high growth rates is attributed to the unique features of the ICP-assisted radio-frequency magnetron sputtering deposition approach. The results are relevant to the development of photovoltaic thin-film solar cells and flat panel displays.
Resumo:
Aluminum doped zinc oxide polycrystalline thin films (AZO) were prepared by sol-gel dip-coating process. The sol was prepared from an ethanolic solution of zinc acetate using lithium hydroxide or succinic acid as hydrolytic catalyst. The quantity of aluminum in the sol was varied from 1 to 10 mol%. The structural characteristics studied by X-ray diffractometry were complemented by resistivity measurements and UV-Vis-NIR spectroscopy. The films are transparent from the near ultraviolet to the near infrared, presenting an absorption cut-off at almost 290 nm, irrespective of the nature of the catalyst and doping level. The best conductors were obtained for the AZO films containing 3 mol% of aluminum, prepared under acidic and basic catalysis and sintered at 450 degreesC. Their optical band-gap of 4.4 eV calculated from the absorption cut-off is larger than the values for band-gap widening predicted by the standard model for polar semiconductors. These polycrystalline films are textured with preferential orientation of grains along the wurtzite c-axis or the (100) direction. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In the last decades, an increasing interest in the research field of wide bandgap semiconductors was observed, mostly due to the progressive approaching of silicon-based devices to their theoretical limits. 4H-SiC is an example among these, and is a mature compound for applications. The main advantages offered 4H-SiC in comparison with silicon are an higher breakdown field, an higher thermal conductivity, a higher operating temperature, very high hardness and melting point, biocompatibility, but also low switching losses in high frequencies applications and lower on-resistances in unipolar devices. Then, 4H-SiC power devices offer great performance improvement; moreover, they can work in hostile environments where silicon power devices cannot function. Ion implantation technology is a key process in the fabrication of almost all kinds of SiC devices, owing to the advantage of a spatially selective doping. This work is dedicated to the electrical investigation of several differently-processed 4H-SiC ion- implanted samples, mainly through Hall effect and space charge spectroscopy experiments. It was also developed the automatic control (Labview) of several experiments. In the work, the effectiveness of high temperature post-implant thermal treatments (up to 2000°C) were studied and compared considering: (i) different methods, (ii) different temperatures and (iii) different duration of the annealing process. Preliminary p + /n and Schottky junctions were also investigated as simple test devices. 1) Heavy doping by ion implantation of single off-axis 4H-SiC layers The electrical investigation is one of the most important characterization of ion-implanted samples, which must be submitted to mandatory post-implant thermal treatment in order to both (i) recover the lattice after ion bombardment, and (ii) address the implanted impurities into lattice sites so that they can effectively act as dopants. Electrical investigation can give fundamental information on the efficiency of the electrical impurity activation. To understand the results of the research it should be noted that: (a) To realize good ohmic contacts it is necessary to obtain spatially defined highly doped regions, which must have conductivity as low as possible. (b) It has been shown that the electrical activation efficiency and the electrical conductivity increase with the annealing temperature increasing. (c) To maximize the layer conductivity, temperatures around 1700°C are generally used and implantation density high till to 10 21 cm -3 . In this work, an original approach, different from (c), is explored by the using very high annealing temperature, around 2000°C, on samples of Al + -implant concentration of the order of 10 20 cm -3 . Several Al + -implanted 4H-SiC samples, resulting of p-type conductivity, were investigated, with a nominal density varying in the range of about 1-5∙10 20 cm -3 and subjected to two different high temperature thermal treatments. One annealing method uses a radiofrequency heated furnace till to 1950°C (Conventional Annealing, CA), the other exploits a microwave field, providing a fast heating rate up to 2000°C (Micro-Wave Annealing, MWA). In this contest, mainly ion implanted p-type samples were investigated, both off-axis and on-axis <0001> semi-insulating 4H-SiC. Concerning p-type off-axis samples, a high electrical activation of implanted Al (50-70%) and a compensation ratio below 10% were estimated. In the work, the main sample processing parameters have been varied, as the implant temperature, CA annealing duration, and heating/cooling rates, and the best values assessed. MWA method leads to higher hole density and lower mobility than CA in equivalent ion implanted layers, resulting in lower resistivity, probably related to the 50°C higher annealing temperature. An optimal duration of the CA treatment was estimated in about 12-13 minutes. A RT resistivity on the lowest reported in literature for this kind of samples, has been obtained. 2) Low resistivity data: variable range hopping Notwithstanding the heavy p-type doping levels, the carrier density remained less than the critical one required for a semiconductor to metal transition. However, the high carrier densities obtained was enough to trigger a low temperature impurity band (IB) conduction. In the heaviest doped samples, such a conduction mechanism persists till to RT, without significantly prejudice the mobility values. This feature can have an interesting technological fall, because it guarantee a nearly temperature- independent carrier density, it being not affected by freeze-out effects. The usual transport mechanism occurring in the IB conduction is the nearest neighbor hopping: such a regime is effectively consistent with the resistivity temperature behavior of the lowest doped samples. In the heavier doped samples, however, a trend of the resistivity data compatible with a variable range hopping (VRH) conduction has been pointed out, here highlighted for the first time in p-type 4H-SiC. Even more: in the heaviest doped samples, and in particular, in those annealed by MWA, the temperature dependence of the resistivity data is consistent with a reduced dimensionality (2D) of the VRH conduction. In these samples, TEM investigation pointed out faulted dislocation loops in the basal plane, whose average spacing along the c-axis is comparable with the optimal length of the hops in the VRH transport. This result suggested the assignment of such a peculiar behavior to a kind of spatial confinement into a plane of the carrier hops. 3) Test device the p + -n junction In the last part of the work, the electrical properties of 4H-SiC diodes were also studied. In this case, a heavy Al + ion implantation was realized on n-type epilayers, according to the technological process applied for final devices. Good rectification properties was shown from these preliminary devices in their current-voltage characteristics. Admittance spectroscopy and deep level transient spectroscopy measurements showed the presence of electrically active defects other than the dopants ones, induced in the active region of the diodes by ion implantation. A critical comparison with the literature of these defects was performed. Preliminary to such an investigation, it was assessed the experimental set up for the admittance spectroscopy and current-voltage investigation and the automatic control of these measurements.
Resumo:
Aluminum-doped p-type polycrystalline silicon thin films have been synthesized on glass substrates using an aluminum target in a reactive SiH 4+Ar+H2 gas mixture at a low substrate temperature of 300∈°C through inductively coupled plasma-assisted RF magnetron sputtering. In this process, it is possible to simultaneously co-deposit Si-Al in one layer for crystallization of amorphous silicon, in contrast to the conventional techniques where alternating metal and amorphous Si layers are deposited. The effect of aluminum target power on the structural and electrical properties of polycrystalline Si films is analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and Hall-effect analysis. It is shown that at an aluminum target power of 100 W, the polycrystalline Si film features a high crystalline fraction of 91%, a vertically aligned columnar structure, a sheet resistance of 20.2 kΩ/□ and a hole concentration of 6.3×1018 cm-3. The underlying mechanism for achieving the semiconductor-quality polycrystalline silicon thin films at a low substrate temperature of 300∈°C is proposed.
Resumo:
A well-known red fluorescent dye 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)4H-pyran (DCJTB) was codoped with an electron transport organic molecule tris(8-hydroxyquinohne) aluminum (Alq3) in a host matrix of polystyrene (PS), and the amplified spontaneous emission (ASE) was studied by optically pumping. It was found that the ASE performance was significantly improved by the introduction of Alq3. The Alq3:DCJTB:PS blending thin films showed a low threshold (2.4 mu J/pulse) and a high net gain coefficient (109.95 cm(-1)) compared with the pure DCJTB:PS system (threshold of 15.2 mu J/pulse and gain of 35.94 cm(-1)). The improvement of the ASE performance was considered to be attributable to the effective Foster energy transfer from Alq(3) to DCJTB. Our results demonstrate that the Alq(3):DCJTB could be a promising candidate as gain medium for red organic diode lasers.
Resumo:
We have studied the influence of Al doping on the microstructural, optical, and electrical properties of spray-deposited WO3 thin films. XRD analyses confirm that all the films are of polycrystalline WO3 in nature, possessing monoclinic structure. EDX profiles of the Al-doped films show aluminum peaks implying incorporation of Al ions into WO3 lattice. On Al doping, the average crystallite size decreases due to increase in the density of nucleation centers at the time of film growth. The observed variation in the lattice parameter values on Al doping is attributed to the incorporation of Al ions into WO3 lattice. Enhancement in the direct optical band gap compared to the undoped film has been observed on Al doping due to decrease in the width of allowed energy states near the conduction band edge. The refractive indices of the films follow the Cauchy relation of normal dispersion. Electrical resistivity compared to the undoped film has been found to increase on Al doping.
Resumo:
In this paper, we present results on upconversion luminescence performed on Yb3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A novel series of emitting aluminum complexes containing two 8-hydroxyquinoline ligands (q) and a phenolato ligand (p) were synthesized and characterized. Double layer organic light-emitting diodes (OLEDs) were fabricated using these complexes as luminescent layers, and strong electroluminescence (EL) was observed. It was found that their emitting wavelengths were mainly determined by the first ligands (q). Cyclic voltammograms revealed a partially irreversible n-doping process and indicated that these complexes show excellent electron-transporting ability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm−3 to 2.6 × 1019 cm−3 . The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.
Resumo:
The tridecameric Al-polymer [AlO4Al12(OH)24(H2O)12]7+ was prepared by forced hydrolysis of Al3+ up to an OH/Al molar ratio of 2.2. Under slow evaporation crystals were formed of Al13-nitrate. Upon addition of sulfate the tridecamer crystallised as the monoclinic Al13-sulfate. These crystals have been studied using near-infrared spectroscopy and compared to Al2(SO4)3.16H2O. Although the near-infrared spectra of the Al13-sulfate and nitrate are very similar indicating similar crystal structures, there are minor differences related to the strength with which the crystal water molecules are bonded to the salt groups. The interaction between crystal water and nitrate is stronger than with the sulfate as reflected by the shift of the crystal water band positions from 6213, 4874 and 4553 cm–1 for the Al13 sulfate towards 5925, 4848 and 4532 cm–1 for the nitrate. A reversed shift from 5079 and 5037 cm–1 for the sulfate towards 5238 and 5040 cm–1 for the nitrate for the water molecules in the Al13 indicate that the nitrate-Al13 bond is weakened due to the influence of the crystal water on the nitrate. The Al-OH bond in the Al13 complex is not influenced by changing the salt group due to the shielding by the water molecules of the Al13 complex.
Resumo:
Recently, unlike conventional method in supplying shielding gas, a newly method which alternately supplies different kinds of shielding gases in weld zone is developed and partly commercialized. However, literature related to the present status of the technology in the actual weld field is very scant. To give better understand on this technology, this study was performed. Compared with conventional gas supply method, the variations of weld porosity and weld shape in aluminum welding with alternate supply method of pure argon and pure helium were compared with conventional gas supply method with pure argon and argon + 67%helium mixture, respectively. As a result, compared with the welding by supplying pure argon and argon + 67%helium mixture by conventional method, the welding by supplying alternately pure argon and pure helium, produced lower degree of weld porosity and deeper and broader weld penetration profile.
Resumo:
This paper presents bonding technology of aluminum alloy by hot-dipping tin. The dissolution curve of copper in molten tin liquid was obtained in the experiment of hot-dipping Sn. Optimal hot-dipping parameter which was suitable for soldering was designed. To elucidate characteristics of interfacial evolution, the microstructure of the coatings, soldered joint were analyzed using optical microscopy, SEM and EDX. The shear strength of soldered joints was tested as high as 39.9Mpa, which is high enough to achieve the requirement of electronic industry.