859 resultados para alternative demonstration


Relevância:

60.00% 60.00%

Publicador:

Resumo:

AbstractAlternative considerably simpler ways of obtaining the Hartree and Hartree-Fock equations are presented. These alternatives do not replace the formal demonstrations, which should be introduced in undergraduate or graduate courses according to the required level of student training. However, the use of the present approaches allows a student-friendlier introduction of the basic principles of electronic structure calculations as a prior teaching resource to the formal demonstrations. General implications and comparisons between the Hartree and Hartree-Fock energies are discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transverse joints are placed in portland cement concrete pavements to control the development of random cracking due to stresses induced by moisture and thermal gradients and restrained slab movement. These joints are strengthened through the use of load transfer devices, typically dowel bars, designed to transfer load across the joint from one pavement slab to the next. Epoxy coated steel bars are the materials of choice at the present time, but have experienced some difficulties with resistance to corrosion from deicing salts. The research project investigated the use of alternative materials, dowel size and spacing to determine the benefits and limitations of each material. In this project two types of fiber composite materials, stainless steel solid dowels and epoxy coated dowels were tested for five years in side by side installation in a portion of U.S. 65 near Des Moines, Iowa, between 1997 and 2002. The work was directed at analyzing the load transfer characteristics of 8-in. vs. 12-in. spacing of the dowels and the alternative dowel materials, fiber composite (1.5- and 1.88-in. diameter) and stainless steel (1.5-in. diameter), compared to typical 1.5-in. diameter epoxy-coated steel dowels placed on 12-in. spacing. Data were collected biannually within each series of joints and variables in terms of load transfer in each lane (outer wheel path), visual distress, joint openings, and faulting in each wheel path. After five years of performance the following observations were made from the data collected. Each of the dowel materials is performing equally in terms of load transfer, joint movement and faulting. Stainless steel dowels are providing load transfer performance equal to or greater than epoxy-coated steel dowels at the end of five years. Fiber reinforced polymer (FRP) dowels of the sizes and materials tested should be spaced no greater than 8 in. apart to achieve comparable performance to epoxy coated dowels. No evidence of deterioration due to road salts was identified on any of the products tested. The relatively high cost of stainless steel solid and FRP dowels was a limitation at the time of this study conclusion. Work is continuing with the subject materials in laboratory studies to determine the proper shape, spacing, chemical composition and testing specification to make the FRP and stainless (clad or solid) dowels a viable alternative joint load transfer material for long lasting portland cement concrete pavements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The function of dowel bars is the transfer of a load across the transverse joint from one pavement slab to the adjoining slab. In the past, these transfer mechanisms have been made of steel. However, pavement damage such as loss of bonding, deterioration, hollowing, cracking and spalling start to occur when the dowels begin to corrode. A significant amount of research has been done to evaluate alternative types of materials for use in the reinforcement of concrete pavements. Initial findings have indicated that stainless steel and fiber composite materials possess properties, such as flexural strength and corrosion resistance, that are equivalent to the Department of Transportation specifications for standard steel, 1 1/2 inch diameter dowel bars. Several factors affect the load transfer of dowels; these include diameter, alignment, grouting, bonding, spacing, corrosion resistance, joint spacing, slab thickness and dowel embedment length. This research is directed at the analysis of load transfer based on material type and dowel spacing. Specifically, this research is directed at analyzing the load transfer characteristics of: (a) 8-inch verses 12-inch spacing, and (b) alternative dowel material compared to epoxy coated steel dowels, will also be analyzed. This report documents the installation of the test sections, placed in 1997. Dowel material type and location are identified. Construction observations and limitations with each dowel material are shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gross dissection for demonstrating anatomy of the human pelvis has traditionally involved one of two approaches, each with advantages and disadvantages. Classic hemisection in the median plane through the pelvic ring transects the visceral organs but maintains two symmetric pelvic halves. An alternative paramedial transection compromises one side of the bony pelvis but leaves the internal organs intact. The authors propose a modified technique that combines advantages of both classical dissections. This novel approach involves dividing the pubic symphysis and sacrum in the median plane after shifting all internal organs to one side. The hemipelvis without internal organs is immediately available for further dissection of the lower limb. The hemipelvis with intact internal organs is ideal for showing the complex spatial relationships of the pelvic organs and vessels relative to the intact pelvic floor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern imaging technologies, such as computed tomography (CT) techniques, represent a great challenge in forensic pathology. The field of forensics has experienced a rapid increase in the use of these new techniques to support investigations on critical cases, as indicated by the implementation of CT scanning by different forensic institutions worldwide. Advances in CT imaging techniques over the past few decades have finally led some authors to propose that virtual autopsy, a radiological method applied to post-mortem analysis, is a reliable alternative to traditional autopsy, at least in certain cases. The authors investigate the occurrence and the causes of errors and mistakes in diagnostic imaging applied to virtual autopsy. A case of suicide by a gunshot wound was submitted to full-body CT scanning before autopsy. We compared the first examination of sectional images with the autopsy findings and found a preliminary misdiagnosis in detecting a peritoneal lesion by gunshot wound that was due to radiologist's error. Then we discuss a new emerging issue related to the risk of diagnostic failure in virtual autopsy due to radiologist's error that is similar to what occurs in clinical radiology practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable energy technologies have long-term economic and environmental advantages over fossil fuels, and solar power is the most abundant renewable resource, supplying 120 PW over earth’s surface. In recent years the cost of photovoltaic modules has reached grid parity in many areas of the world, including much of the USA. A combination of economic and environmental factors has encouraged the adoption of solar technology and led to an annual growth rate in photovoltaic capacity of 76% in the US between 2010 and 2014. Despite the enormous growth of the solar energy industry, commercial unit efficiencies are still far below their theoretical limits. A push for thinner cells may reduce device cost and could potentially increase device performance. Fabricating thinner cells reduces bulk recombination, but at the cost of absorbing less light. This tradeoff generally benefits thinner devices due to reduced recombination. The effect continues up to a maximum efficiency where the benefit of reduced recombination is overwhelmed by the suppressed absorption. Light trapping allows the solar cell to circumvent this limitation and realize further performance gains (as well as continue cost reduction) from decreasing the device thickness. This thesis presents several advances in experimental characterization, theoretical modeling, and device applications for light trapping in thin-film solar cells. We begin by introducing light trapping strategies and discuss theoretical limits of light trapping in solar cells. This is followed by an overview of the equipment developed for light trapping characterization. Next we discuss our recent work measuring internal light scattering and a new model of scattering to predict the effects of dielectric nanoparticle back scatterers on thin-film device absorption. The new model is extended and generalized to arbitrary stacks of stratified media containing scattering structures. Finally, we investigate an application of these techniques using polymer dispersed liquid crystals to produce switchable solar windows. We show that these devices have the potential for self-powering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paraquat is a fast acting nonselective contact herbicide that is extensively used worldwide. However, the aqueous solubility and soil sorption of this compound can cause problems of toxicity in nontarget organisms. This work investigates the preparation and characterization of nanoparticles composed of chitosan and sodium tripolyphosphate (TPP) to produce an efficient herbicidal formulation that was less toxic and could be used for safer control of weeds in agriculture. The toxicities of the formulations were evaluated using cell culture viability assays and the Allium cepa chromosome aberration test. The herbicidal activity was investigated in cultivations of maize (Zea mays) and mustard (Brassica sp.), and soil sorption of the nanoencapsulated herbicide was measured. The efficiency association of paraquat with the nanoparticles was 62.6 ± 0.7%. Encapsulation of the herbicide resulted in changes in its diffusion and release as well as its sorption by soil. Cytotoxicity and genotoxicity assays showed that the nanoencapsulated herbicide was less toxic than the pure compound, indicating its potential to control weeds while at the same time reducing environmental impacts. Measurements of herbicidal activity showed that the effectiveness of paraquat was preserved after encapsulation. It was concluded that the encapsulation of paraquat in nanoparticles can provide a useful means of reducing adverse impacts on human health and the environment, and that the formulation therefore has potential for use in agriculture.