974 resultados para alternative control of plant disease
Resumo:
Certain strains of fluorescent pseudomonads are important biological components of agricultural soils that are suppressive to diseases caused by pathogenic fungi on crop plants. The biocontrol abilities of such strains depend essentially on aggressive root colonization, induction of systemic resistance in the plant, and the production of diffusible or volatile antifungal antibiotics. Evidence that these compounds are produced in situ is based on their chemical extraction from the rhizosphere and on the expression of antibiotic biosynthetic genes in the producer strains colonizing plant roots. Well-characterized antibiotics with biocontrol properties include phenazines, 2,4-diacetylphloroglucinol, pyoluteorin, pyrrolnitrin, lipopeptides, and hydrogen cyanide. In vitro, optimal production of these compounds occurs at high cell densities and during conditions of restricted growth, involving (i) a number of transcriptional regulators, which are mostly pathway-specific, and (ii) the GacS/GacA two-component system, which globally exerts a positive effect on the production of extracellular metabolites at a posttranscriptional level. Small untranslated RNAs have important roles in the GacS/GacA signal transduction pathway. One challenge in future biocontrol research involves development of new strategies to overcome the broad toxicity and lack of antifungal specificity displayed by most biocontrol antibiotics studied so far.
Resumo:
The objective of this work was to evaluate the effects of plant essential oils (EOs) on the growth of Xanthomonas vesicatoria, on bacterial morphology and ultrastructure, and on the severity of tomato bacterial spot. EOs from citronella, clove, cinnamon, lemongrass, eucalyptus, thyme, and tea tree were evaluated in vitro at concentrations of 0.1, 1.0, 10, and 100% in 1.0% powdered milk. The effect of EOs, at 0.1%, on the severity of tomato bacterial spot was evaluated in tomato seedlings under greenhouse conditions. The effects of citronella, lemongrass, clove, and tea tree EOs, at 0.1%, on X. vesicatoria cells were evaluated by transmission electron microscopy. All EOs showed direct toxic effect on the bacteria at a 10%-concentration in vitro. Under greenhouse conditions, the EOs of clove, citronella, tea tree, and lemongrass reduced disease severity. EOs of clove and tea tree, and streptomycin sulfate promoted loss of electron-dense material and alterations in the cytoplasm, whereas EO of tea tree promoted cytoplasm vacuolation, and those of citronella, lemongrass, clove, and tea tree caused damage to the bacterial cell wall. The EOs at a concentration of 0.1% reduce the severity of the disease.
Resumo:
Plants constitute an excellent ecosystem for microorganisms. The environmental conditions offered differ considerably between the highly variable aerial plant part and the more stable root system. Microbes interact with plant tissues and cells with different degrees of dependence. The most interesting from the microbial ecology point of view, however, are specific interactions developed by plant-beneficial (either non-symbiotic or symbiotic) and pathogenic microorganisms. Plants, like humans and other animals, also become sick, but they have evolved a sophisticated defense response against microbes, based on a combination of constitutive and inducible responses which can be localized or spread throughout plant organs and tissues. The response is mediated by several messenger molecules that activate pathogen-responsive genes coding for enzymes or antimicrobial compounds, and produces less sophisticated and specific compounds than immunoglobulins in animals. However, the response specifically detects intracellularly a type of protein of the pathogen based on a gene-for-gene interaction recognition system, triggering a biochemical attack and programmed cell death. Several implications for the management of plant diseases are derived from knowledge of the basis of the specificity of plant-bacteria interactions. New biotechnological products are currently being developed based on stimulation of the plant defense response, and on the use of plant-beneficial bacteria for biological control of plant diseases (biopesticides) and for plant growth promotion (biofertilizers)
Resumo:
As an evaluation scheme, we propose certifying for “control”, as alternative to “interruption”, of Chagas disease transmission by native vectors, to project a more achievable and measurable goal and sharing good practices through an “open online platform” rather than “formal certification” to make the key knowledge more accumulable and accessible.
Resumo:
Bovine tuberculosis (BTB) was introduced into Swedish farmed deer herds in 1987. Epidemiological investigations showed that 10 deer herds had become infected (July 1994) and a common source of infection, a consignment of 168 imported farmed fallow deer, was identified (I). As trace-back of all imported and in-contact deer was not possible, a control program, based on tuberculin testing, was implemented in July 1994. As Sweden has been free from BTB since 1958, few practicing veterinarians had experience in tuberculin testing. In this test, result relies on the skill, experience and conscientiousness of the testing veterinarian. Deficiencies in performing the test may adversely affect the test results and thereby compromise a control program. Quality indicators may identify possible deficiencies in testing procedures. For that purpose, reference values for measured skin fold thickness (prior to injection of the tuberculin) were established (II) suggested to be used mainly by less experienced veterinarians to identify unexpected measurements. Furthermore, the within-veterinarian variation of the measured skin fold thickness was estimated by fitting general linear models to data (skin fold measurements) (III). The mean square error was used as an estimator of the within-veterinarian variation. Using this method, four (6%) veterinarians were considered to have unexpectedly large variation in measurements. In certain large extensive deer farms, where mustering of all animals was difficult, meat inspection was suggested as an alternative to tuberculin testing. The efficiency of such a control was estimated in paper IV and V. A Reed Frost model was fitted to data from seven BTB-infected deer herds and the spread of infection was estimated (< 0.6 effective contacts per deer and year) (IV). These results were used to model the efficiency of meat inspection in an average extensive Swedish deer herd. Given a 20% annual slaughter and meat inspection, the model predicted that BTB would be either detected or eliminated in most herds (90%) 15 years after introduction of one infected deer. In 2003, an alternative control for BTB in extensive Swedish deer herds, based on the results of paper V, was implemented.
Resumo:
BHC application in Mambai in 1980 resulted in a significant decline but not elimination of domiciliated T. infestans. T. sordida peridomestic populations persist and could pose a threat to interupting human transmission of T. cruzi The results of one massive attack spray application alone was compared with this application plus one selective application as regards the presence of T. infestans in houses oneyear later. No significance difference could be detected. It is likely that for interruption of T. infestans transmission cheaper procedures can be devised than those currently in use. A further pilot study of a virgin community afflicted by T. infestans transmission is indicated since Mambai cannot be regarded as a representative areafor those still awaiting insecticide application.
Resumo:
Evolutionary theory may contribute to practical solutions for control of disease by identifying interventions that may cause pathogens to evolve to reduced virulence. Theory predicts, for example, that pathogens transmitted by water or arthropod vectors should evolve to relatively high levels of virulence because such pathogens can gain the evolutionary benefits of relatively high levels of host exploitation while paying little price from host illness. The entrance of Vibrio cholerae into South America in 1991 has generated a natural experiment that allows testing of this idea by determining whether geographic and temporal variations in toxigenicity correspond to variation in the potential for waterborne transmission. Preliminary studies show such correspondences: toxigenicity is negatively associated with access to uncontaminated water in Brazil; and in Chile, where the potential for waterborne transmission is particularly low, toxigenicity of strains declined between 1991 and 1998. In theory vector-proofing of houses should be similarly associated with benignity of vectorborne pathogens, such as the agents of dengue, malaria, and Chagas' disease. These preliminary studies draw attention to the need for definitive prospective experiments to determine whether interventions such as provisioning of uncontaminated water and vector-proofing of houses cause evolutionary reductions in virulence
Resumo:
Chagas disease, in the Amazon Region as elsewhere, can be considered an enzootic disease of wild animals or an anthropozoonosis, an accidental disease of humans that is acquired when humans penetrate a wild ecosystem or when wild triatomines invade human dwellings attracted by light or searching for human blood. The risk of endemic Chagas disease in the Amazon Region is associated with the following phenomena: (i) extensive deforestation associated with the displacement of wild mammals, which are the normal sources of blood for triatomines, (ii) adaptation of wild triatomines to human dwellings due to the need for a new source of blood for feeding and (iii) uncontrolled migration of human populations and domestic animals that are already infected with Trypanosoma cruzi from areas endemic for Chagas disease to the Amazon Region. Several outbreaks of severe acute cases of Chagas disease, as well as chronic cases, have been described in the Amazon Region. Control measures targeted to avoiding endemic Chagas disease in the Amazon Region should be the following: improving health education in communities, training public health officials and communities for vector and Chagas disease surveillance and training local physicians to recognise and treat acute and chronic cases of Chagas diseases as soon as possible.
Resumo:
Chagas disease is maintained in nature through the interchange of three cycles: the wild, peridomestic and domestic cycles. The wild cycle, which is enzootic, has existed for millions of years maintained between triatomines and wild mammals. Human infection was only detected in mummies from 4,000-9,000 years ago, before the discovery of the disease by Carlos Chagas in 1909. With the beginning of deforestation in the Americas, two-three centuries ago for the expansion of agriculture and livestock rearing, wild mammals, which had been the food source for triatomines, were removed and new food sources started to appear in peridomestic areas: chicken coops, corrals and pigsties. Some accidental human cases could also have occurred prior to the triatomines in peridomestic areas. Thus, triatomines progressively penetrated households and formed the domestic cycle of Chagas disease. A new epidemiological, economic and social problem has been created through the globalisation of Chagas disease, due to legal and illegal migration of individuals infected by Trypanosoma cruzi or presenting Chagas disease in its varied clinical forms, from endemic countries in Latin America to non-endemic countries in North America, Europe, Asia and Oceania, particularly to the United States of America and Spain. The main objective of the present paper was to present a general view of the interchanges between the wild, peridomestic and domestic cycles of the disease, the development of T. cruzi among triatomine, their domiciliation and control initiatives, the characteristics of the disease in countries in the Americas and the problem of migration to non-endemic countries.