993 resultados para alpine region
Resumo:
Of the present estimated world population of 14.2 million yaks, approximately 13.3 million occur within Chinese territories (Food and Agriculture Organization of the United Nations, 2003). Although there is an extensive bibliography covering the species, few studies have been conducted in the area of foraging behaviour. The present study was conducted at pasture during the spring, transitional, summer and winter seasons to determine the daily temporal patterns of grazing and ruminating behaviour by yaks. During each study period, two 24 h recordings were undertaken with each of six mature dairy yaks. One study period was conducted on each of the transitional, summer and winter pastures, whereas, due to the considerable changes occurring in the morphology of the spring pasture, three separate studies were completed during March, April and May. During the second of these studies (April), the effect of level of concentrate supplementation on grazing and ruminating behaviour was also examined. Behaviour recordings were made using solid-state behaviour recorders. Short-term intake rates (IR, g min(-1)) were calculated by weighing yaks before and after approximately 1 h of grazing, retaining the faeces and urine excreted and applying a correction for insensible weight loss. Yaks spent less time grazing during the dry season (the early period on the spring pasture) compared with the later green swards (the later period on the spring pasture, the transitional pasture and the summer pasture) (P < 0.05). When the forage quality improved, but there was still insufficient mass (the later period on the spring pasture), the yaks extended their grazing time at the expense of other activities. During the early periods on the spring pasture, the short-term IR by yaks was up to 53 g DM min(-1), significantly higher than at other times (P < 0.05). The level of concentrate offered had little or no effect on grazing or ruminating time. The total eating time of the yaks offered 0.5 or 1.0 kg concentrate was 2.9 and 4.5 h day(-1) respectively, significantly lower than unsupplemented yaks (6.8 h) (P < 0.05). In general, yaks can regulate their foraging behaviour according to the changes of sward conditions in order to achieve optimal grazing strategies. (C) 2007 Published by Elsevier B.V.
Resumo:
In the alpine region of the Tibetan Plateau, five perennial grass cultivars, Bromus inermis (B), Elymus nutans (E), Clinelymus nutans (C), Agropyron cristatum (A), and Poa crymophila (P) were combined into nine communities with different compositions and ratios, B+C, E+A, B+E+A, E+B+C,C+E+A,B+E+C+A,B+C+A+P,B+E+A+P and E+C+A+P. Each combination was sown in six 10 X 10 m plots with three hand-weeded plots and three natural-growing plots in a completely randomised design in 1998. A field experiment studied the performance of these perennial grass combinations under the competitive interference of annual weeds in 3 consecutive years from 1998 to 2000. The results showed that annual weeds occupied more space and suppressed the growth of the grasses due to earlier germination and quicker growth in the establishment year, but this pattern changed in the second and third years. Leaf area indexes (LAIs) of grasses were greatly decreased by the competitive interference of weeds, and the negative effect of weeds on LAIs of grasses declined and stabilised in the second and third years. E+B+C, B+E+C+A, and B+E+A+P possessed relatively higher LAIs (P < 0.05) among all grass combinations and their LAIs were close to five when the competitive interference of weeds was removed. Grasses were competitively inferior to weeds in the establishment year, although their competitive ability (aggressivities) increased throughout the growing season. In the second and third years, grasses were competitively superior to weeds, and their competitive ability decreased from May until August and increased in September. Dry matter (DM) yields of grasses were reduced by 29.8-74.1% in the establishment year, 11.0-64.9% in the second year, and 16.0-55.8% in the third year by the competitive interference of weeds. B+E+C+A and B+E+A+P can produce around 14 t/ha of DM yields, significantly higher (P < 0.05) than the production of the other grass combinations in the second and third years after the competitive interference of weeds was removed. It was preliminarily concluded that removal of competitive interference of weeds increased the LAIs of all grass swards and improved the light interception of grasses, thus promoting the production of perennial grass pastures. The germination stage of the grasses in the establishment year was the critical period for weeding and suppression of weeds should occur at an early stage of plant growth. The grass combinations of B+E+C+A and B+E+A+P were productive and can be extensively established in the alpine regions of the Tibetan Plateau. Two or three growing seasons will be needed before determining success of establishment of grass mixtures under the alpine conditions of the Tibetan Plateau.
Resumo:
A study was conducted on grass mixtures that included smooth bromegrass (SB) + drooping wild ryegrass (DW), smooth bromegrass + Siberian wild ryegrass (SW) + crested wheatgrass (CW) and smooth bromegrass + Siberian wild ryegrass + drooping wild ryegrass + crested wheatgrass in the alpine region of Qinghai-Tibetan Plateau. The study was conducted from 1998 to 2000 to investigate the effects of N application rates and growing year on herbage dry matter (DM) yield and nutritive values. Herbage DM production increased linearly with N application rates. The effect of N application on DM yields was greater (P < 0.05) in the 2nd and 3rd production years than in the establishment year. Dry matter yields of SB + SW + CW and SB + SW + DW + CW can reach as high as 15 000 kg ha(-1) at 345 kg ha(-1) N rate in the 3rd growing year. With increased N application rates, crude protein (CP) contents and 48 h in sacco DM degradability of grasses increased (P < 0.05). No effect (P > 0.05) of N application was detected on organic matter (OM) and acid detergent fibre (ADF) concentration. It can be concluded that for increased biomass production in the alpine region of the Qinghai-Tibetan Plateau, a minimum of 345 kg N ha(-1) should be applied to grass stands in three split application of 115 kg N ha(-1), in early June, early July and late July
Resumo:
In the alpine region of the Qinghai-Tibetan Plateau four indigenous perennial grass species Bromus inermis (BI), Elymus sibiricus (ES), Elymus nutans (EN) and Agropyron cristatum (AC) were cultivated as three mixtures with different compositions and seeding rates, BI + EN, BI + ES + AC and BI + ES + EN + AC. From 1998 to 2001 there were three different weeding treatments: never weeded (CK); weeded on three occasions in the first year (1-y) and weeded on three occasions in both the first and second year (2-y) and their effect of grass combination and interactions on sward productivity and persistence was measured. Intense competitive interference by weedy annuals reduced dry matter (DM) yield of the swards. Grass combination significantly affected sward DM yields, leaf area index (LAI) and foliar canopy cover and also species composition DM and LAI, and species plant cover. Interaction between weeding treatments and grass combination was significant for sward DM yield, LAI and canopy cover, but not on species composition for DM, LAI or species plant cover. Grass mixture BI + ES + EN + AC gave the highest sward DM yield and LAI for both weeding and non-weeding treatments. Species ES and EN were competitively superior to the others. Annual weedy forbs must be controlled to obtain productive and stable mixtures of perennial grasses, and germination/emergence is the most important time for removal. Weeding three times (late May, late June and mid-July) in the establishment year is enough to maintain the production and persistence of perennial grass mixtures in the following growing seasons. Extra weeding three times in the second growing year makes only a slight improvement in productivity.
Resumo:
Effects of grazing intensity on leaf photosynthetic rate (Pn), specific leaf area (SLA), individual tiller density, sward leaf area index (LAI), harvested herbage DM, and species composition in grass mixtures (Clinelymus nutans + Bromus inermis, Elymus nutans + Bromus inermis + Agropyron cristatum and Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum) were studied in the alpine region of the Tibetan Plateau. Four grazing intensities (GI), expressed as feed utilisation rates (UR) by Tibetan lambs were imposed as follows: (1) no grazing; (2) 30% UR as light grazing; (3) 50% UR as medium grazing; and (4) 70% UR as high grazing. Leaf Pn rate and tiller density of grasses increased (P < 0.05), while sward LAI and harvested herbage DM declined (P < 0.05) with the increments of GI, although no effect of GI on SLA was observed. With increasing GI, Elymus nutans and Clinelymus nutans increased but Bromus inermis and Agropyron cristatum decreased in swards, LAI and DM contribution. Whether being grazed or not, Elymus nutans + Clinelymus nutans + Bromus inermis + Agropyron cristatum was the most productive sward among the grass mixtures. Thus, two well-performed grass species (Elymus nutans and Clinelymus nutans) and the most productive mixture of four species should be investigated further as the new feed resources in the alpine grazing system of the Tibetan Plateau. Light grazing intensity of 30% UR was recommended for these grass mixtures when swards, LAI, herbage DM harvested, and species compatibility were taken into account.
Resumo:
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.
Resumo:
The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.