976 resultados para alpine
Resumo:
Plants subjected to increases in the supply of resource(s) limiting growth may allocate more of those resources to existing leaves, increasing photosynthetic capacity, and/or to production of more leaves, increasing whole-plant photosynthesis. The responses of three populations of the alpine willow, Salix glauca, growing along an alpine topographic sequence representing a gradient in soil moisture and organic matter, and thus potential N supply, to N amendments, were measured over two growing seasons, to elucidate patterns of leaf versus shoot photosynthetic responses. Leaf-(foliar N, photosynthesis rates, photosynthetic N-use efficiency) and shoot-(leaf area per shoot, number of leaves per shoot, stem weight, N resorption efficiency) level measurements were made to examine the spatial and temporal variation in these potential responses to increased N availability. The predominant response of the willows to N fertilization was at the shoot-level, by production of greater leaf area per shoot. Greater leaf area occurred due to production of larger leaves in both years of the experiment and to production of more leaves during the second year of fertilization treatment. Significant leaf-level photosynthetic response occurred only during the first year of treatment, and only in the dry meadow population. Variation in photosynthesis rates was related more to variation in stomatal conductance than to foliar N concentration. Stomatal conductance in turn was significantly related to N fertilization. Differences among the populations in photosynthesis, foliar N, leaf production, and responses to N fertilization indicate N availability may be lowest in the dry meadow population, and highest in the ridge population. This result is contrary to the hypothesis that a gradient of plant available N corresponds with a snowpack/topographic gradient.
Resumo:
A nutrient amendment experiment was conducted for two growing seasons in two alpine tundra communities to test the hypotheses that: (1) primary production is limited by nutrient availability, and (2) physiological and developmental constraints act to limit the responses of plants from a nutrient-poor community more than plants from a more nutrient-rich community to increases in nutrient availability. Experimental treatments consisted of N, P, and N+P amendments applied to plots in two physiognomically similar communities, dry and wet meadows. Extractable N and P from soils in nonfertilized control plots indicated that the wet meadow had higher N and P availability. Photosynthetic, nutrient uptake, and growth responses of the dominants in the two communities showed little difference in the relative capacity of these plants to respond to the nutrient additions. Aboveground production responses of the communities to the treatments indicated N availability was limiting to production in the dry meadow community while N and P availability colimited production in the wet meadow community. There was a greater production response to the N and N+P amendments in the dry meadow relative to the wet meadow, despite equivalent functional responses of the dominant species of both communities. The greater production response in the dry meadow was in part related to changes in community structure, with an increase in the proportion of graminoid and forb biomass, and a decrease in the proportion of community biomass made up by the dominant sedge Kobresia myosuroides. Species richness increased significantly in response to the N+P treatment in the dry meadow. Graminoid biomass increased significantly in the wet meadow N and N+P plots, while forb biomass decreased significantly, suggesting a competitive interaction for light. Thus, the difference in community response to nutrient amendments was not the result of functional changes at the leaf level of the dominant species, but rather was related to changes in community structure in the dry meadow, and to a shift from a nutrient to a light limitation of production in the wet meadow.
Resumo:
Digital Image
Resumo:
The water-heat transfer process between land and atmosphere in Haibei alpine meadow area has been systematically observed. A multi-layer coupling model for land-atmosphere interaction was presented with special attention paid to the moisture transfer in leaf stomata under unsaturated condition. A profound investigation on the physical process of turbulent transfer inside the vegetation has been performed with a revised formula of water absorption for root system. The present model facilitates the study of vertically distributed physical variables in detail. Numerical simulation was conducted according to the transfer process of Kinesia humility meadow in the area of Haibei Alpine Meadow Ecosystem Station, CAS. The calculated results agree well with observation.
Resumo:
This brief paper describes the significance of seasonal variation in clutch-size of the copepod Arctodiaptomus bacillifer in alpine lakes of high altitudes (Val Bognanco). Seasonal dynamics of the zooplankton of these lakes was studied during summer and autumn of 1968 and 1969and results are summarised.
Resumo:
Zooplankton was studied in four alpine lakes in Switzerland, France and Italy. The presence the presence of the invertebrate predator Heterocope in three lakes was stated. It is then discussed why in three of these four lakes, the copepod Arctodiaptomus denticornis is present in the absence of Arctodiaptomus bacillifer, and vice versa respectively in the second and first parts of the lacustrine summer.
Resumo:
The problem of the peculiar reproductive biology of the cladoceran Daphnia middendorffiana is investigated from a cytological viewpoint, and by direct observation the meiotic phenomena of the eggs both subitaneous and resting is studied. and during maturation, the true mechanism of the succession of reproductive phases of different ecological significance. Samples were collected in the Italian Alpine Lake of Campo 4°.
Resumo:
Several alpine vertebrates share a distribution pattern that extends across the South-western Palearctic but is limited to the main mountain massifs. Although they are usually regarded as cold-adapted species, the range of many alpine vertebrates also includes relatively warm areas, suggesting that factors beyond climatic conditions may be driving their distribution. In this work we first recognize the species belonging to the mentioned biogeographic group and, based on the environmental niche analysis of Plecotus macrobullaris, we identify and characterize the environmental factors constraining their ranges. Distribution overlap analysis of 504 European vertebrates was done using the Sorensen Similarity Index, and we identified four birds and one mammal that share the distribution with P. macrobullaris. We generated 135 environmental niche models including different variable combinations and regularization values for P. macrobullaris at two different scales and resolutions. After selecting the best models, we observed that topographic variables outperformed climatic predictors, and the abruptness of the landscape showed better predictive ability than elevation. The best explanatory climatic variable was mean summer temperature, which showed that P. macrobullaris is able to cope with mean temperature ranges spanning up to 16 degrees C. The models showed that the distribution of P. macrobullaris is mainly shaped by topographic factors that provide rock-abundant and open-space habitats rather than climatic determinants, and that the species is not a cold-adapted, but rather a cold-tolerant eurithermic organism. P. macrobullaris shares its distribution pattern as well as several ecological features with five other alpine vertebrates, suggesting that the conclusions obtained from this study might be extensible to them. We concluded that rock-dwelling and open-space foraging vertebrates with broad temperature tolerance are the best candidates to show wide alpine distribution in the Western Palearctic.
Do clonal growth form and habitat origin affect resource-induced plasticity in Tibetan alpine herbs?
Resumo:
Using static chamber technique,fluxes of CO2,CH4 and N2O were measured in the alpine grassland area from July 2000 to July 2001,determinations of mean fluxes showed that CO2 and N2O were generally released from the soil,while the alpine grassland accounted for a weak CH4 sink.Fluxes of CO2,CH4 and N2O ranged widely.The highest CO2 emission occurred in August,whereas almost 90?of the whole year emission occurred in the growing season.But the variations of CH4 and N2O fluxes did not show any clear patterns over the one-year-experiment.During a daily variation,the maximum CO2 emission occurred at 16:00,and then decreased to the minimum emission in the early morning.Daily pattern analyses indicated that the variation in CO2 fluxes was positively related to air temperatures(R^2=0.73)and soil temperatures at a depth of 5 cm(R^2=0.86),whereas daily variations in CH4 and N2O fluxes were poorly explained by soil temperatures and climatic variables.CO2 emissions in this area were much lower than other grasslands in plain areas.
Resumo:
National Key Research and Development Program [2010CB833500]; National Natural Science Foundation of China [30590381]; Chinese Academy of Sciences [KZCX2-YW-432]
Resumo:
National Key Research and Development Program [2010CB833500]; Natural Science Foundation of China [30590381]; Knowledge Innovation Project of Chinese Academy of Sciences [KZCX2-YW-432]
Resumo:
Plant traits and individual plant biomass allocation of 57 perennial herbaceous species, belonging to three common functional groups (forbs, grasses and sedges) at subalpine (3700 m ASL), alpine (4300 m ASL) and subnival (>= 5000 m ASL) sites were examined to test the hypothesis that at high altitudes, plants reduce the proportion of aboveground parts and allocate more biomass to belowground parts, especially storage organs, as altitude increases, so as to geminate and resist environmental stress. However, results indicate that some divergence in biomass allocation exists among organs. With increasing altitude, the mean fractions of total biomass allocated to aboveground parts decreased. The mean fractions of total biomass allocation to storage organs at the subalpine site (7%+/- 2% S.E.) were distinct from those at the alpine (23%+/- 6%) and subnival (21%+/- 6%) sites, while the proportions of green leaves at all altitudes remained almost constant. At 4300 m and 5000 m, the mean fractions of flower stems decreased by 45% and 41%, respectively, while fine roots increased by 86% and 102%, respectively. Specific leaf areas and leaf areas of forbs and grasses deceased with rising elevation, while sedges showed opposite trends. For all three functional groups, leaf area ratio and leaf area root mass ratio decreased, while fine root biomass increased at higher altitudes. Biomass allocation patterns of alpine plants were characterized by a reduction in aboveground reproductive organs and enlargement of fine roots, while the proportion of leaves remained stable. It was beneficial for high altitude plants to compensate carbon gain and nutrient uptake under low temperature and limited nutrients by stabilizing biomass investment to photosynthetic structures and increasing the absorption surface area of fine roots. In contrast to forbs and grasses that had high mycorrhizal infection, sedges had higher single leaf area and more root fraction, especially fine roots.