144 resultados para allelopathic
Resumo:
The aim of this study was to look for evidence of allelochemicals in B. decumbens, in parts of the plant from where they could easily be released to the environment. The germination inhibition of Phalaris canariensis, Lactuca sativa (standard species) and Melinis minutiflora, another invasive African grass, was tested using B. decumbens germinating seeds and aqueous leachates of the roots, green and senescent leaves, at 5, 10 and 20% w/v. Both the germinating seeds and the aqueous leachates of B. decumbens reduced the germination of the species tested; the effectiveness of the aqueous leachates increased according to concentration. Apparently, the competitive advantage of B. decumbens in the cerrados could be amplified via allelopathy.
Resumo:
We investigated the inhibitory potential of aqueous extracts of bark and leaves of Esenbeckia leiocarpa Engl. on lettuce germination and early seedling growth. We compared the effects of four concentrations (100, 75, 50 and 25%) of each extract to water and polyethylene glycol (PEG 6000) solution controls for four replicates of 50 seeds tor germination and four replicates of ten seedlings for seedling growth. The inhibitory effects of E. leiocarpa extracts on the percentage of germination and on the germination speed seemed to be inure than simply an osmotic effect, except for the percentage of seeds germinated in bark extracts. When compared to water control. both bark and leaf extracts delayed germination, and leaf extracts also affected the percentage of germinated seeds. Leaf ex tracts of all concentrations strongly inhibited the development of seedlings and caused them some degree of abnormality; bark extracts also caused abnormalities and reduced seedling growth. Root development was more sensitive to the extracts than hypocotyl growth. The negative effects of leaf extracts on germination and seedling growth were more pronounced than those of bark extracts, and the overall effects of both extracts were positively correlated with extract concentrations.
Resumo:
Organic extracts were obtained from roots of Canavalia ensiformis and evaluated for allelopathic potential on the germination of the weed seeds: Mimosa pudica, Cassia tora and Cassia occidentalis showing a strong allelopathic potential. After that, a systematic study of these crude extracts was made using specific protocols developed in capillary electrophoresis (CE) in order to determine some classes of secondary metabolites. Capillary electrophoresis protocols were highly specific, which makes it possible to identify 5 classes of compounds using the same crude extract samples and analyze them fartly. Some of the compounds identified show activity in the inhibition of seeds germination.
Resumo:
The use of microorganisms to induce chemical modifications in organic molecules is a very useful tool in organic synthesis, to obtain biologically active substances. The fungus Cephalosporium aphidicola is known by its ability to hydroxylate several skeleton positions of many classes of organic compounds. In this work, the microbial transformation of ent-kaur-16-en-19-ol (1) by C. aphidicola, afforded two hydroxylated compounds, ent-kauran-16β,19-diol (2) and ent-kauran-16β,17,19-triol (3). Their structures were established by 1D and 2D-NMR studies. Both compounds were tested for their action on the growth of radical and shoot of Lactuca sativa.
Resumo:
Hybrids of Sorghum sudanensis (sudangrass) and Sorghum bicolor genotypes can produce high amounts of biomass, sorgoleone (a long chain hydroquinone), and other phytotoxic substances. Shoots and roots of a sorghum-sudangrass hybrid (cv. Trudan 8) were collected 10, 20, 30, 40, and 50 days after emergence. Four concentrations of aqueous extracts from the shoots and roots (0, 0.4, 2, and 10 g L-1, w/v) were used to treat seeds of lettuce (Lactuca sativa), tomato (Lycopersicum sculentum), purslane (Portulaca oleracea), and pigweed (Amaranthus retroflexus). Seed germination of lettuce, tomato, and pigweed was inhibited by extracts from sorghum-sudangrass shoots at 10 g L-1 when made from sorghum-sudangrass plants 20 days or less in age. Seed germination of purslane was not inhibited by any sorghum-sudangrass extract. Growth of the four species evaluated were systematically inhibited when treated with 10 g L-1 extracts from sorghum-sudangrass shoots harvested up to 10 days after emergence.
Resumo:
A Petri dish assay was carried out for screening different concentrations of aqueous extracts of fresh and dry leaves of Eucalyptus citriodora on germination and seedling growth of wild oat weed (Avena fatua). Seed germination, root and shoot length of wild oat exhibited different degrees of inhibition according to the concentration of the aqueous extract. Maximum inhibitions of germination percentage, root and shoot length were recorded when using 25% fresh leaf extract. Based on this preliminary work (Petri dish assay), studies were conducted under greenhouse conditions at the National Research Center, Egypt, in the two winter seasons of 2006/2007 and 2007/2008 to evaluate the effects of foliar and soil treatments of aqueous extracts of Eucalyptus citriodora fresh and dry leaves on wild oat weed as well as on the growth and flowering of amaryllis (Hippeastrum hybridum), compared with the recommended dose of the herbicide tralkoxydim. Amaryllis fresh and dry weights as well as flowering increased significantly when treated with the previous extracts, especially the fresh leaf extract. However, the fresh and dry weights of wild oat were significantly reduced by the aqueous extracts, either fresh or dry, indicating phytotoxic effects. Tralkoxydim caused complete inhibition of wild oat as compared with the control. The studies involved estimation of the endogenous contents of total phenols in weed. With all the treatments, the inhibitory effects on weeds were correlated with accumulation of the internal contents of total phenols, compared to their respective controls. The amount of phenols correlated well with the weed's growth performance. This study establishes the effect of the aqueous extracts on the weed wild oat, associated with amaryllis, which may serve as a tool in establishing their herbicidal potential.
Resumo:
Laboratory and greenhouse experiments were conducted to evaluate the phytotoxic effect of black mustard extracts and root exudates on two crops: Trifolium alexandrinum and Triticum aestivum, and two weeds: Phalaris paradoxa and Sisymbrium irio. The seeds were treated with aqueous and ethanolic extracts and chloroform for eight days, or subjected to root exudates of just harvested mustard in a greenhouse for five weeks. High-performance liquid chromatography (HPLC) was used to quantify phytotoxins from plant tissues. Seed germination of P. paradoxa was reduced with the lowest concentration of the different extracts. However, the aqueous extract at 4% completely curtailed the germination of all the target species. In general, plant extracts had a concentration-dependent reduction of seedling growth of the target species. However, the ethanolic extract, at the lowest concentration, has stimulated the shoot length of both T. alexandrinum and T. aestivum, and the root length of the former. Mustard root exudates inhibited emergence and growth of the target species throughout the experiment. Ferulic and syringic acids were the dominant allelochemicals found when HPLC was used.
Resumo:
Herbicidal potential of different plant aqueous extracts was evaluated against early seedling growth of rice weeds in pot studies. Plant aqueous extracts of sorghum (Sorghum bicolor), sunflower (Helianthus annuus), brassica (Brassica compestris), mulberry (Morris alba), eucalyptus (Eucalyptus camaldunensis), and winter cherry (Withania somnifera) at a spray volume of 18 L ha-1 each at the 2-4 leaf stage of rice weeds viz horse purslane (Trianthema portulacastrum) [broad-leaf], jungle rice (Echinochloa colona), and E. crus-galli (barnyard grass) [grasses] and purple nut sedge (Cyperus rotundus) and rice flat sedge (C. iria) [sedges]. The results showed significant interactive effects between plant aqueous extracts and the tested weed species for seedling growth attributes depicting that allelopathic inhibition was species-specific. Shoot and root length, lateral plant spread, biomass accumulation, and leaf chlorophyll contents in test species were all reduced by different extracts. The study suggested the suppressive potential of allelopathic plant aqueous extracts against rice weeds, and offered promise for their usefulness as a tool for weed management under field conditions.
Resumo:
Experiments were conducted to evaluate the allelopathic influence of Rhynchosia capitata on germination and seedling growth of mungbean (Vigna radiate) along with identification of the phytotoxic substances responsible for this activity. Water extracts of root, shoot, leaf, fruit and whole plant were prepared by soaking them in water in a ratio of 1:20 (w/v) for 24 h. All the extracts affected germination and seedling growth of mungbean, but higher inhibition was seen with R. capitata leaf water extracts. A linear decrease in the germination characteristics of mungbean was observed with the decrease in the concentration of leaf extract from 5% to 1%. The soil-incorporated residues (1-4% w/w) of R. capitata stimulated the growth of root and hypocotyl at low concentrations, while it inhibited their growth at higher concentrations. Rhynchosia capitata soil-incorporated residues (4% w/w) significantly reduced the seedling vigour index of mungbean in addition to their significant effect on total germination. A significant amount of water-soluble phenolic acids were found in R. capitata plant extracts. The content of total phenolic acids was higher in the leaf extract compared to that of the stem, fruit or root extracts. Two phenolic acids including vanillic acid and 4‑(hydroxymethyl) benzoic acid were found in R. capitata leaf extracts.
Resumo:
A laboratory study was conducted to investigate the allelopathic effect of aqueous extracts of plant parts of Alternanthera philoxeroides and A. sessilis and soil incorporated residues on germination and seedling growth of rice (Oryza sativa). Aqueous extracts prepared from different plant parts of Alternanthera species delayed rice germination. Alternanthera philoxeroides and A. sessilis inhibited rice germination by 9-100% and 4-49%, respectively. Germination of rice seeds was reduced with increasing concentration of aqueous leaf extracts of both weed species. Early seedling growth (root and shoot lengths) and seedling vigor index were significantly reduced by 5% aqueous leaf extract compared with distilled water treated control. Germination, root and shoot lengths, root and shoot dry weights and seedling vigor index of rice were drastically reduced by 3 and 4% in residue infested soil compared with residue free soil. The inhibitory effect of A. philoxeroides in terms of germination and seedling growth of rice was greater than that of A. sessilis. Five percent aqueous leaf extract and 4% residue infested soil of A. philoxeroides caused complete failure of rice seed germination. Alternanthera philoxeroides contained water soluble phenolics, namely 4 hydroxy-3-methoxy benzoic acid (16.19 mg L-1) and m-coumaric acid (1.48 mg L-1), whereas Alternanthera sessilis was rich in chlorogenic acid (17.85 mg L-1), gallic acid (11.03 mg L-1) and vanillic acid (9.88 mg L-1). The study indicates that the allelopathic potential of Alternanthera species may play an important role in enhancing the invasiveness of these species and may suppress rice plants in the vicinity.
Resumo:
Biosynthesis and subsequent release of allelochemicals by a plant into the environment is supposed to be influenced by its growing conditions. To ascertain what will be the allelopathic action of plant parts and rhizospheric soils of parthenium (Parthenium hysterophorus) growing at various farm locations with varied growing conditions, germination and seedling growth of maize hybrid (DK 6142) were assayed by sowing its seeds in petri plates lined with filter paper and pots filled with soil. Minimum germination percentage (30.0%), germination index (2.01), germination energy (36.3), seedling length (3.3 cm), seedling biomass (10 mg) and seedling vigor index (99.0) of maize were observed in leaf extract followed by fruit and whole plant extracts of parthenium growing near the field border. Rhizospheric soil collected underneath parthenium growing near a water channel caused maximum reductions in germination index (30.8%), germination energy (40.6%), seedling length (32.6%), seedling biomass (35.1%) and seedling vigor index (34.3%) of maize compared with that soil without any vegetation. Phytotoxic inhibitory effects of both parthenium plant and rhizospheric soil were more pronounced on maize root than its shoot growth. The higher suppressive action against germination and seedling growth of maize was probably due to higher total phenolic concentrations (6678.2 and 2549.0 mg L-1) and presence of phenolic compounds viz., gallic, caffeic, 4-hydroxy-3-methoxy benzoic, p-coumaric and m-coumaric acids; and ferulic, vanillic, syringic and m-coumaric acids in aqueous leaf extract of parthenium uprooted near the field border and its rhizospheric soil collected near a water channel, respectively.
Resumo:
Growing concerns about toxicity and development of resistance against synthetic herbicides have demanded looking for alternative weed management approaches. Allelopathy has gained sufficient support and potential for sustainable weed management. Aqueous extracts of six plant species (sunflower, rice, mulberry, maize, brassica and sorghum) in different combinations alone or in mixture with 75% reduced dose of herbicides were evaluated for two consecutive years under field conditions. A weedy check and S-metolachlor with atrazine (pre emergence) and atrazine alone (post emergence) at recommended rates was included for comparison. Weed dynamics, maize growth indices and yield estimation were done by following standard procedures. All aqueous plant extract combinations suppressed weed growth and biomass. Moreover, the suppressive effect was more pronounced when aqueous plant extracts were supplemented with reduced doses of herbicides. Brassica-sunflower-sorghum combination suppressed weeds by 74-80, 78-70, 65-68% during both years of study that was similar with S-metolachlor along half dose of atrazine and full dose of atrazine alone. Crop growth rate and dry matter accumulation attained peak values of 32.68 and 1,502 g m-2 d-1 for brassica-sunflower-sorghum combination at 60 and 75 days after sowing. Curve fitting regression for growth and yield traits predicted strong positive correlation to grain yield and negative correlation to weed dry biomass under allelopathic weed management in maize crop.
Resumo:
This study aimed to evaluate the allelopathic effect of various concentrations of an aqueous extract of eucalyptus leaves on Urochloa decumbens and Panicum maximum seeds. The extract was prepared from Eucalyptus urograndis leaves that were milled and mixed with distilled water in a 1:9 milled leaves: water ratio to obtain an extract with a defined concentration of 100%. In addition, dilutions of 50%, 25% and 12.5% were prepared, and a 0% dilution was used as a control. The experiment followed a completely randomized design, with four replicates, each of 50 seeds of U. decumbens and 50 seeds of P. maximum, arranged on filter paper moistened with each concentration of extract in a Gerbox plastic box. The results demonstrated the allelopathic potential of E. urograndis aqueous extracts applied to the seeds of U. decumbens and P. maximum. The 50% and 100% concentrations of leaf extract most strongly inhibited the germination, vigor and seedling growth of U. decumbens and P. maximum. The germination speed index and the root length were the characteristics that were most affected by the potentially allelopathic substances contained in the eucalyptus extracts at all concentrations.
Resumo:
The allelopathic effect studied in many cultures has currently generated great expectations that displayed a natural and environmentally friendly tool for weed management using bioherbicides. The objective of this work was to assess allelopathic influence of residues of S. trilobata on the germination and growth of weeds, as well as their relation with some crops and effects on soil properties. Results show that residues from S. trilobata have inhibited the germination of weeds (31.6 - 72%), increasingly with the applied dose. All residue doses of this specie have inhibited dicotyledonous germination, but only maximum concentration has affected monocotyledons. The residues did not affect onion germination, but stimulated it in radish and tomato, while the dose applied at 50% produced tomato stimulation and inhibition of cabbage. The effects of residues on hypocotyl growth in different crops showed changes in species response. For onion, the three doses had negative effects on the growth of hypocotyl, while tomato was stimulated. For radish, the growth was hindered by any dose applied, and were only different (50 and 100%) compared to control. For cabbage, only hypocotyl length was stimulated, when maximum dose (100%) was applied. For the radicle growth, in onion and radish no differences were found compared to control. While the tomato radicle growth was inhibited, in cabbage, all doses encouraged the elongation of the radicle. The dry mass of weed was affected by increased dose of residue (0.49 - 8.8 g m-2), however the soil microflora was stimulated, while the population of Azotobacter spp. was not affect. Some soil properties were affected, the level of organic material, Na+ and electrical conductivity were increased, while pH (H2O) decreased a bit, however it remained basic.
Resumo:
Sapindus saponaria (soapberry) is a species that presents a great diversity of chemical compounds, such as saponins; however, few studies have examined the allelopathic effect of this species. Therefore, this study provides an evaluation of the allelopathic potential of aqueous extracts of the roots and mature leaves of S. saponaria on the germination of diaspores and seedlings growth of lettuce (Lactuca sativa) and onion (Allium cepa). The aqueous extract was prepared in the proportion of 100 g of dry plant material in 1,000 mL of distilled water (a concentration of 10% w v-1), and diluted with distilled water to 7.5, 5.0 and 2.5% concentrations. The mature leaf extracts caused delay and decrease in the germination process of the lettuce and onion diaspores, with inhibitory effect concentration-dependent, while the root extracts showed no allelopathic effects on the germination process. Both extracts caused abnormalities and inhibited the growth of shoot and root seedlings.