918 resultados para allelic imprinting


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In addition to methylated cytosines (5-mCs), hydroxymethylcytosines (5-hmCs) are present in CpG dinucleotide-enriched regions and some transcription regulator binding sites. Unlike methylation, hydroxymethylation does not result in silencing of gene expression, and the most commonly used methods to study methylation, such as techniques based on restriction enzymatic digestion and/or bisulfite modification, are unable to distinguish between them. Genomic imprinting is a process of gene regulation where only one member of an allelic pair is expressed depending on the parental origin. Chromosome 11p15.5 has an imprinting control region (ICR2) that includes a differentially methylated region (KvDMR1) that guarantees parent-specific gene expression. The objective of the present study was to determine the presence of 5-hmC at the KvDMR1 in human placentas. We analyzed 16 third-trimester normal human placentas (chorionic villi). We compared two different methods based on real-time PCR after enzymatic digestion. The first method distinguished methylation from hydroxymethylation, while the other method did not. Unlike other methylation studies, subtle variations of methylation in ICRs could represent a drastic deregulation of the expression of imprinted genes, leading to important phenotypic consequences, and the presence of hydroxymethylation could interfere with the results of many studies. We observed agreement between the results of both methods, indicating the absence of hydroxymethylation at the KvDMR1 in third-trimester placentas. To the best of our knowledge, this is the first study describing the investigation of hydroxymethylation in human placenta using a genomic imprinting model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Genomic imprinting is defined as a gamete of origin-specific epigenetic modification of DNA leading to differential gene expression in the zygote. Several imprinted genes have been identified and some of them are associated with tumor development. We investigated the expression and the imprinting status of IGF2 and H19 genes in 47 uterine leiomyomas. Using allelic transcription assay, we detected the expression of the IGF2 gene in 10 of a total of 15 informative cases. No loss of imprinting, as determined by the finding of biallelic expression, was detected in any case. The expression of H19 gene was detected in 10 of 20 informative cases and the imprinting pattern was also maintained in all of them. Our data suggest that alterations in IGF2 and H19 genes expression by loss of imprinting do not occur in uterine leiomyomas. (C) 1999 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. IGF2 and H19 are reciprocal imprinted genes with paternal and maternal monoallelic expression, respectively. This is interesting, because IGF2 is known as a growth factor, and H19 encodes a RNA with putative tumor suppressor action. Furthermore, IGF2 and H19 are linked genes located on chromosome 11p15.5, a common site of loss of heterozygosity in human cancers.Methods. We performed an allelic-typing assay using a PCR-RFLP-based method for identification of heterozygous Informative cases in head and neck squamous cell carcinomas. Tumoral total RNA was extracted from each of the heterozygotes and further studied by RT-PCR analysis.Results. We detected the expression of the IGF2 gene in 10 of 10 informative cases. Two cases exhibited LOI of the IGF2 gene as evidenced by biallelic expression, and in another case, LOH was coupled with monoallelic expression of this growth factor. LOI for the H19 gene was observed in 1 of 14 informative samples analyzed. In this case, we also detected parallel mono-allelic expression of the IGF2 gene. Down-regulation of the H19 gene was observed in 10 of 14 cases.Conclusion. These findings support the hypothesis that H19 may be a tumor suppressor gene involved In head and neck carcinogenesis. Furthermore, our data showed that genetic and epigenetic chances at 11p15.5 could lead to abnormal expression of imprinted genes in HNSCC. (C) 2001 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid mice carrying oncogenic transgenes afford powerful systems for investigating loss of heterozygosity (LOH) in tumors. Here, we apply this approach to a neoplasm of key importance in human medicine: mammary carcinoma. We performed a whole genome search for LOH using the mouse mammary tumor virus/v-Ha-ras mammary carcinoma model in female (FVB/N × Mus musculus castaneus)F1 mice. Mammary tumors developed as expected, as well as a few tumors of a second type (uterine leiomyosarcoma) not previously associated with this transgene. Genotyping of 94 anatomically independent tumors revealed high-frequency LOH (≈38%) for markers on chromosome 4. A marked allelic bias was observed, with M. musculus castaneus alleles almost exclusively being lost. No evidence of genomic imprinting effects was noted. These data point to the presence of a tumor suppressor gene(s) on mouse chromosome 4 involved in mammary carcinogenesis induced by mutant H-ras expression, and for which a significant functional difference may exist between the M. musculus castaneus and FVB/N alleles. Provisional subchromosomal localization of this gene, designated Loh-3, can be made to a distal segment having syntenic correspondence to human chromosome 1p; LOH in this latter region is observed in several human malignancies, including breast cancers. Evidence was also obtained for a possible second locus associated with LOH with less marked allele bias on proximal chromosome 4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mouse insulin-like growth factor 2 (Igf2) locus is a complex genomic region that produces multiple transcripts from alternative promoters. Expression at this locus is regulated by parental imprinting. However, despite the existence of putative imprinting control elements in the Igf2 upstream region, imprinted transcriptional repression is abolished by null mutations at the linked H19 locus. To clarify the extent to which the Igf2 upstream region contains autonomous imprinting control elements we have performed functional and comparative analyses of the region in the mouse and human. Here we report the existence of multiple, overlapping imprinted (maternally repressed) sense and antisense transcripts that are associated with a tandem repeat in the mouse Igf2 upstream region. Regions flanking the repeat exhibit tissue-specific parental allelic methylation patterns, suggesting the existence of tissue-specific control elements in the upstream region. Studies in H19 null mice indicate that both parental allelic methylation and monoallelic expression of the upstream transcripts depends on an intact H19 gene acting in cis. The homologous region in human IGF2 is structurally conserved, with the significant exception that it does not contain a tandem repeat. Our results support the proposal that tandem repeats act to target methylation to imprinted genetic loci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The GNAS1 gene encodes the α subunit of the guanine nucleotide-binding protein Gs, which couples signaling through peptide hormone receptors to cAMP generation. GNAS1 mutations underlie the hormone resistance syndrome pseudohypoparathyroidism type Ia (PHP-Ia), so the maternal inheritance displayed by PHP-Ia has raised suspicions that GNAS1 is imprinted. Despite this suggestion, in most tissues Gsα is biallelically encoded. In contrast, the large G protein XLαs, also encoded by GNAS1, is paternally derived. Because the inheritance of PHP-Ia predicts the existence of maternally, rather than paternally, expressed transcripts, we have investigated the allelic origin of other mRNAs derived from GNAS1. We find this gene to be remarkable in the complexity of its allele-specific regulation. Two upstream promoters, each associated with a large coding exon, lie only 11 kb apart, yet show opposite patterns of allele-specific methylation and monoallelic transcription. The more 5′ of these exons encodes the neuroendocrine secretory protein NESP55, which is expressed exclusively from the maternal allele. The NESP55 exon is 11 kb 5′ to the paternally expressed XLαs exon. The transcripts from these two promoters both splice onto GNAS1 exon 2, yet share no coding sequences. Despite their structural unrelatedness, the encoded proteins, of opposite allelic origin, both have been implicated in regulated secretion in neuroendocrine tissues. Remarkably, maternally (NESP55), paternally (XLαs), and biallelically (Gsα) derived proteins all are produced by different patterns of promoter use and alternative splicing of GNAS1, a gene showing simultaneous imprinting in both the paternal and maternal directions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the FGFR3 gene cause the phenotypic spectrum of FGFR3 chondrodysplasias ranging from lethal forms to the milder phenotype seen in hypochondroplasia (Hch). The p.N540K mutation in the FGFR3 gene occurs in ∼70% of individuals with Hch, and nearly 30% of individuals with the Hch phenotype have no mutations in the FGFR3, which suggests genetic heterogeneity. The identification of a severe case of Hch associated with the typical mutation c.1620C > A and the occurrence of a c.1150T > C change that resulted in a p.F384L in exon 10, together with the suspicion that this second change could be a modulator of the phenotype, prompted us to investigate this hypothesis in a cohort of patients. An analysis of 48 patients with FGFR3 chondrodysplasia phenotypes and 330 healthy (control) individuals revealed no significant difference in the frequency of the C allele at the c.1150 position (p = 0.34). One patient carrying the combination `pathogenic mutation plus the allelic variant c.1150T > C' had a typical achondroplasia (Ach) phenotype. In addition, three other patients with atypical phenotypes showed no association with the allelic variant. Together, these results do not support the hypothesis of a modulatory role for the c.1150T > C change in the FGFR3 gene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Cyclophilin 40 (CyP40) is an estrogen receptor-associated protein which appears to modify receptor function. The aim of this study was to determine the extent of allelic loss at the CyP40 locus in a panel of breast carcinomas using a newly characterized microsatellite marker located upstream of the CyP40 gene and then to correlate this with losses at chromosomal sites for cancer-associated genes. Methods: Allelic loss at CyP40 was determined from patients' matched tumor and normal breast tissue using Genescan 672 software analysis of fluorescently labeled, PAGE-separated PCR products incorporating the marker. For each patient, allelic loss at CyP40 was then assessed and compared with losses at markers for various cancer-associated genes. Results: Allelic loss was detected in 30% of breast carcinomas from patients heterozygous for the CyP40 marker. All carcinomas demonstrating allelic loss were grade II or III invasive ductal carcinomas and generally showed multiple losses at other sites near known cancer-associated genes. Conclusions: The polymorphic marker which we characterized was useful in determining allelic loss at the CyP40 locus in breast cancer patients and when applied in these studies in conjunction with various cancer-associated gene markers, suggests that deletions in the region of the CyP40 gene might be a late event in breast tumor progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genomic imprinting alterations have been shown to be associated with assisted reproductive technologies (ARTs) in animals. At present, data obtained in humans are inconclusive; however, some epidemiological studies have demonstrated an increased incidence of imprinting disorders in children conceived by ARTs. In the present study, we focused on the effect of ARTs [IVF and intracytoplasmic sperm injection (ICSI)] on the epigenetic reprogramming of the maternally methylated imprinting control region KvDMR1 in clinically normal children. Qualitative and quantitative methylation at KvDMR1 were assessed by the methylation-specific PCR approach and by the methylation-sensitive enzymatic digestion associated with real-time PCR method, respectively. DNA was obtained from peripheral blood of 12/18 and umbilical cord blood and placenta of 6/18 children conceived by IVF or ICSI. The methylation patterns observed in this group were compared with the patterns observed in 30 clinically normal naturally conceived children (negative controls) and in 3 naturally conceived Beckwith-Wiedemann syndrome patients (positive controls). Hypomethylation at KvDMR1 was observed in 3/18 clinically normal children conceived by ARTs (2 conceived by IVF and 1 by ICSI). A discordant methylation pattern was observed in the three corresponding dizygotic twins. Our findings corroborate the hypothesis of vulnerability of maternal imprinting to ARTs. Furthermore, the discordant methylation at KvDMR1 observed between dizygotic twins could be consequent to one of the following possibilities: (i) a differential vulnerability of maternal imprints among different embryos; or (ii) epimutations that occurred during gametogenesis resulting in the production of oocytes without the correct primary imprint at KvDMR1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human blood fluke Schistosoma mansoni is the primary cause of schistosomiasis, a debilitating disease that affects 200 million individuals in over 70 countries. The biogenic amine serotonin is essential for the survival of the parasite and serotonergic proteins are potential novel drug targets for treating schistosomiasis. Here we characterize two novel serotonin transporter gene transcripts, SmSERT-A and SmSERT-B, from S. mansoni. Southern blot analysis shows that the two mRNAs are the products of different alleles of a single SmSERT gene locus. The two SmSERT forms differ in three amino acid positions near the N-terminus of the protein. Both SmSERTs are expressed in the adult form and in the sporocyst form (infected snails) of the parasite, but are absent from all other stages of the parasite`s complex life cycle. Heterologous expression of the two cDNAs in mammalian cells resulted in saturable, sodium-dependent serotonin transport activity with an apparent affinity for serotonin comparable to that of the human serotonin transporter. Although the two SmSERTs are pharmacologically indistinguishable from each other, efflux experiments reveal notably higher substrate selectivity for serotonin compared with their mammalian counterparts. Several well-established substrates for human SERT including (+/-)MDMA, S-(+)amphetamine, RU 24969, and m-CPP are not transported by SmSERTs, underscoring the higher selectivity of the schistosomal isoforms. Voltage-clamp recordings of SmSERT substrate-elicited currents confirm the substrate selectivity observed in efflux experiments and suggest that it may be possible to exploit the electrogenic nature of SmSERT to screen for compounds that target the parasite in vivo. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of the 1p/19q allelic status in gliomas, primarily those with a major oligodendroglial component, has become an excellent molecular complement to tumor histology in order to identify those cases sensitive to chemotherapy. In addition to loss of heterozygosity (LOH), fluorescence in situ hybridization (FISH), or comparative genomic hybridization (CGH), multiplex ligation-dependent probe amplification (MLPA) has been shown to be an alternative methodology to identify deletions of those chromosome arms. We used MLPA to explore the 1p and 19q glioblastomas, and a series of 76 gliomas: 41 tumors with a major oligodendroglial component, 34 glioblastomas, and one low-grade astrocytoma. We compared the MLPA findings of the oligodendroglial cases with those previously obtained using LOH in the same samples. Thirty-eight of 41 oligodendrogliomas displayed identical findings by both LOH and MLPA, and losses at either 1p and/or 19q were identified in 12 of 35 (34%) astrocytic tumors. These findings agree with data previously reported comparing MLPA versus FISH or CGH in gliomas and suggest that MLPA can be used in the identification 1p/19q allelic deletions on these brain neoplams. (c) 2009 Elsevier Inc. All rights reserved. reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypovitaminosis D is a candidate risk-modifying factor for a diverse range of disorders apart from rickets and osteoporosis. Based on epidemiology, and on in vitro and animal experiment, vitamin D has been linked to multiple sclerosis, certain cancers (prostate, breast and colorectal), insulin-dependent diabetes mellitus and schizophrenia. I hypothesise that low pre- and perinatal vitamin D levels imprint on the functional characteristics of various tissues throughout the body, leaving the affected individual at increased risk of developing a range of adult-onset disorders. The hypothesis draws from recent advances in our understanding of the early origin of adult disease and proposes a 'critical window' during which vitamin D levels may have a persisting impact on adult health outcomes. Methods to test the hypothesis are outlined. If correct, the hypothesis has important implications for public health. Careful attention to maternal vitamin D status could translate into diverse improvements in health outcomes for the following generation. (C) 2001 Harcourt Publishers Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.