20 resultados para aliskiren
Resumo:
BACKGROUND: Pharmacological interruption of the renin-angiotensin system focuses on optimization of blockade. As a measure of intrarenal renin activity, we have examined renal plasma flow (RPF) responses in a standardized protocol. Compared with responses with angiotensin-converting enzyme inhibition (rise in RPF approximately 95 mL x min(-1) x 1.73 m(-2)), greater renal vasodilation with angiotensin receptor blockers (approximately 145 mL x min(-1) x 1.73 m(-2)) suggested more effective blockade. We predicted that blockade with the direct oral renin inhibitor aliskiren would produce renal vascular responses exceeding those induced by angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. METHODS AND RESULTS: Twenty healthy normotensive subjects were studied on a low-sodium (10 mmol/d) diet, receiving separate escalating doses of aliskiren. Six additional subjects received captopril 25 mg as a low-sodium comparison and also received aliskiren on a high-sodium (200 mmol/d) diet. RPF was measured by clearance of para-aminohippurate. Aliskiren induced a remarkable dose-related renal vasodilation in low-sodium balance. The RPF response was maximal at the 600-mg dose (197+/-27 mL x min(-1) x 1.73 m(-2)) and exceeded responses to captopril (92+/-20 mL x min(-1) x 1.73 m(-2); P<0.01). Furthermore, significant residual vasodilation was observed 48 hours after each dose (P<0.01). The RPF response on a high-sodium diet was also higher than expected (47+/-17 mL x min(-1) x 1.73 m(-2)). Plasma renin activity and angiotensin levels were reduced in a dose-related manner. As another functional index of the effect of aliskiren, we found significant natriuresis on both diets. CONCLUSIONS: Renal vasodilation in healthy people with the potent renin inhibitor aliskiren exceeded responses seen previously with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. The effects were longer lasting and were associated with significant natriuresis. These results indicate that aliskiren may provide more complete and thus more effective blockade of the renin-angiotensin system.
Resumo:
Introduction: Tissue Renin-Angiotensin System activity is increased in obesity and may contribute to obesity-related hypertension and metabolic abnormalities. This open-label pilot study investigated the local effects of Aliskiren in adipose tissue and skeletal muscle.Methods: After a 1-2 week washout, 10 patients with hypertension and abdominal obesity received placebo for 2 weeks, then Aliskiren 300 mg once daily for 4 weeks, followed by a 4-week washout period and then another 4 weeks treatment period with Amlodipine 5 mg once daily. Drug concentrations and Renin-Angiotensin Systembiomarkers were measured in interstitial fluid employing the microdialysis zero-flow method, and in biopsies from abdominal subcutaneous adipose and skeletal muscle.Results: After 4 weeks treatment, microdialysate concentrations (mean±SD) of Aliskiren were 2.4±2.1 ng/ml in adipose tissue, and 7.1±4.2 ng/ml in skeletal muscle. These concentrations were similar to the mean plasma concentration of 8.4±4.4 ng/ml. Tissue concentrations (ng/g) of Aliskiren were 29.0±16.7 ng/g in adipose tissue, and 107.3±68.6 ng/g in skeletal muscle after 4 weeks treatment. Angiotensin II concentrations in microdialysates were below the lower limit of quantification in most patients, but pooled data from two patients suggested that Angiotensin II was reduced by Aliskiren and unchanged by Amlodipine. Aliskiren 300 mg significantly reduced mean plasma Renin activity by 68% and Angiotensin II by 61% (p<0.05 vs. baseline). Amlodipine 5 mg increased plasma Renin activity by 48% (p<0.05 vs. baseline), and non-significantly increased Angiotensin II by 60%. Both treatments increased plasma Renin concentration.Conclusion: Aliskiren 300 mg once daily penetrates adipose and skeletal muscle tissue at concentrations sufficient to reduce tissue Renin-Angiotensin System activity in obese patients with hypertension.
Resumo:
Hypertension is associated with increased risk of cardiovascular diseases. Antihypertensive treatment, particularly blockade of the renin-angiotensin system, contributes to prevent atherosclerosis-mediated cardiovascular events. Direct comparison of different antihypertensive treatments on atherosclerosis and particularly plaque stabilization is sparse. ApoE(-/-) mice with vulnerable (2-kidney, 1-clip renovascular hypertension model) or stable (1-kidney, 1-clip renovascular hypertension model) atherosclerotic plaques were used. Mice were treated with aliskiren (renin inhibitor), irbesartan (angiotensin-receptor blocker), atenolol (beta-blocker), or amlodipine (calcium channel blocker). Atherosclerosis characteristics were assessed. Hemodynamic and hormonal parameters were measured. Aliskiren and irbesartan significantly prevented atherosclerosis progression in 2-kidney, 1-clip mice. Indeed, compared with untreated animals, plaques showed thinner fibrous cap (P<0.05); smaller lipid core (P<0.05); decreased media degeneration, layering, and macrophage content (P<0.05); and increased smooth muscle cell content (P<0.05). Interestingly, aliskiren significantly increased the smooth muscle cell compared with irbesartan. Despite similar blood pressure lowering, only partial plaque stabilization was attained by atenolol and amlodipine. Amlodipine increased plaque smooth muscle cell content (P<0.05), whereas atenolol decreased plaque inflammation (P<0.05). This divergent effect was also observed in 1-kidney, 1-clip mice. Normalizing blood pressure by irbesartan increased the plasma renin concentration (5932+/-1512 ng/mL per hour) more than normalizing it by aliskiren (16085+/-5628 ng/mL per hour). Specific renin-angiotensin system blockade prevents atherosclerosis progression. First, evidence is provided that direct renin inhibition mediates atherosclerotic plaque stabilization. In contrast, beta-blocker and calcium channel blocker treatment only partially stabilize plaques differently influencing atherogenesis. Angiotensin II decisively mediates plaque vulnerability. The plasma renin concentration measurement by an indirect method did not confirm the excessive increase of plasma renin concentration reported in the literature during aliskiren compared with irbesartan or amlodipine treatment.
Resumo:
Background: Most patients miss occasional doses of antihypertensives. The use of 'forgiving' drugs (i.e. drugs with duration of action longer than the 24-h dosing interval) may allow an adequate blood pressure (BP) reduction to be maintained despite missed doses. Aim:To quantify the effects of adherence level and duration of action on estimated mean systolic BP (SBP) reduction and cardiovascular disease (CVD) risk. Method:For 1250 patients, we simulated 256-day dosing histories with realistically distributed drug holidays based on a study of electronically monitored dosing records. Adherence was set to the desired level by altering the proportion of doses missed. Mean office SBP-lowering effect (aliskiren 300 mg, -14.1 mmHg; irbesartan 300 mg, -13.3; ramipril 10 mg, -10.1 mmHg) and the rate of SBP increase after stopping treatment (off-rate; aliskiren, 1.0 mmHg/day; irbesartan, 3.6 mmHg/day; ramipril, 4.0 mmHg/day) were taken from the results of a randomised, double-blind trial. SBP was averaged over time and patient to estimate mean reductions in SBP and 10-year CVD risk (Framingham risk equation, baseline absolute 10-year CVD risk: 27%). Results:Predicted reductions in SBP and CVD risk with aliskiren were larger and less affected by imperfect adherence than the reductions with irbesartan or ramipril. For aliskiren, reducing adherence from 90% to 60% led to a predicted rise in SBP of 1.0 mmHg and three additional CVD events per 1000 treated patients; larger predicted differences were observed for irbesartan (2.5 mmHg; 7.5 events/1000 treated patients) and ramipril (2.2 mmHg; 6.7 events/1000 treated patients). Conclusion:To offset the effects of imperfect adherence, a common challenge with antihypertensives, for better BP management it may be prudent to prescribe 'forgiving' drugs.
Resumo:
BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, ≥6 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful. (Funded by Novartis; ALTITUDE ClinicalTrials.gov number, NCT00549757.).
Resumo:
Angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and diuretics all cause reactive rises in plasma renin concentration, but particularly high levels have been reported with aliskiren. This prompted speculation that blockade of plasma renin activity with aliskiren could be overwhelmed, leading to paradoxical increases in blood pressure. This meta-analysis of data from 4877 patients from 8 randomized, double-blind, placebo- and/or active-controlled trials examined this hypothesis. The analysis focused on the incidence of paradoxical blood pressure increases above predefined thresholds, after > or =4 weeks of treatment with 300 mg of aliskiren, angiotensin receptor blockers (300 mg of irbesartan, 100 mg of losartan, or 320 mg of valsartan), 10 mg of ramipril, 25 mg of hydrochlorothiazide, or placebo. There were no significant differences in the frequency of increases in systolic (>10 mm Hg; P=0.30) or diastolic (>5 mm Hg; P=0.65) pressure among those treated with aliskiren (3.9% and 3.1%, respectively), angiotensin receptor blockers (4.0% and 3.7%), ramipril (5.7% and 2.6%), or hydrochlorothiazide (4.4% and 2.7%). Increases in blood pressure were considerably more frequent in the placebo group (12.6% and 11.4%; P<0.001). None of the 536 patients with plasma renin activity data who received 300 mg of aliskiren exhibited an increase in systolic pressure >10 mm Hg that was associated with an increase in plasma renin activity >0.1 ng/mL per hour. In conclusion, the incidence of blood pressure increases with aliskiren was similar to that during treatment with other antihypertensive drugs. Blood pressure rises on aliskiren treatment were not associated with increases in plasma renin activity. This meta-analysis found no evidence that aliskiren uniquely causes paradoxical rises in blood pressure.
Resumo:
For determination of aliskiren in commercial samples, an analytical UV spectrophotometric method was developed and validate according to ICH guideline. The method was linear in the range between 40 and 100 μg mL-1 (r² = 0.9997, n = 7) and exhibited suitable specificity, accuracy, precision, and robustness. It is simple, it has low cost, and it has low use polluting reagents. Therefore, the proposed method was successfully applied for the assay and dissolution studies of aliskiren in tablet dosage forms, and the results were compared to a validated RP-LC method, showing non-significant difference (P > 0.05).
Resumo:
Angiotensin II is a key player in the pathogenesis of renovascular hypertension, a condition associated with endothelial dysfunction. We investigated aliskiren (ALSK) and L-arginine treatment both alone and in combination on blood pressure (BP), and vascular reactivity in aortic rings. Hypertension was induced in 40 male Wistar rats by clipping the left renal artery. Animals were divided into Sham, 2-kidney, 1-clip (2K1C) hypertension, 2K1C+ALSK (ALSK), 2K1C+L-arginine (L-arg), and 2K1C+ALSK+L-arginine (ALSK+L-arg) treatment groups. For 4 weeks, BP was monitored and endothelium-dependent and independent vasoconstriction and relaxation were assessed in aortic rings. ALSK+L-arg reduced BP and the contractile response to phenylephrine and improved acetylcholine relaxation. Endothelium removal and incubation with N-nitro-L-arginine methyl ester (L-NAME) increased the response to phenylephrine in all groups, but the effect was greater in the ALSK+L-arg group. Losartan reduced the contractile response in all groups, apocynin reduced the contractile response in the 2K1C, ALSK and ALSK+L-arg groups, and incubation with superoxide dismutase reduced the phenylephrine response in the 2K1C and ALSK groups. eNOS expression increased in the 2K1C and L-arg groups, and iNOS was increased significantly only in the 2K1C group compared with other groups. AT1 expression increased in the 2K1C compared with the Sham, ALSK and ALSK+L-arg groups, AT2 expression increased in the ALSK+L-arg group compared with the Sham and L-arg groups, and gp91phox decreased in the ALSK+L-arg group compared with the 2K1C and ALSK groups. In conclusion, combined ALSK+L-arg was effective in reducing BP and preventing endothelial dysfunction in aortic rings of 2K1C hypertensive rats. The responsible mechanisms appear to be related to the modulation of the local renin-angiotensin system, which is associated with a reduction in endothelial oxidative stress.
Resumo:
Aim: The renin-angiotensin-aldosterone system (RAAS) has dual pathways to angiotensin II production; therefore, multiple blockages may be useful in heart failure. In this study, we evaluated the short-term haemodynamic effects of aliskiren, a direct renin inhibitor, in patients with decompensated severe heart failure who were also taking angiotensin-converting enzyme ( ACE) inhibitors. Materials and methods: A total of 16 patients (14 men, two women, mean age: 60.3 years) were enrolled in the study. The inclusion criteria included hospitalisation due to decompensated heart failure, ACE inhibitor use, and an ejection fraction < 40% (mean: 21.9 +/- 6.7%). The exclusion criteria were: creatinine > 2.0 mg/dl, cardiac pacemaker, serum K+ > 5.5 mEq/l, and systolic blood pressure < 70 mmHg. Patients either received 150 mg/d aliskiren for 7 days (aliskiren group, n = 10) or did not receive aliskiren (control group, n = 6). Primary end points were systemic vascular resistance and cardiac index values. Repeated-measures analysis of variance (ANOVA) was used to assess variables before and after intervention. A two-sided p-value < 0.05 was considered statistically significant. Results: Compared to pre-intervention levels, systemic vascular resistance was reduced by 20.4% in aliskiren patients, but it increased by 2.9% in control patients (p = 0.038). The cardiac index was not significantly increased by 19.0% in aliskiren patients, but decreased by 8.4% in control patients (p = 0.127). No differences in the pulmonary capillary or systolic blood pressure values were observed between the groups. Conclusion: Aliskiren use reduced systemic vascular resistance in patients with decompensated heart failure taking ACE inhibitors.
Resumo:
BACKGROUND: This study was undertaken to determine whether use of the direct renin inhibitor aliskiren would reduce cardiovascular and renal events in patients with type 2 diabetes and chronic kidney disease, cardiovascular disease, or both. METHODS: In a double-blind fashion, we randomly assigned 8561 patients to aliskiren (300 mg daily) or placebo as an adjunct to an angiotensin-converting-enzyme inhibitor or an angiotensin-receptor blocker. The primary end point was a composite of the time to cardiovascular death or a first occurrence of cardiac arrest with resuscitation; nonfatal myocardial infarction; nonfatal stroke; unplanned hospitalization for heart failure; end-stage renal disease, death attributable to kidney failure, or the need for renal-replacement therapy with no dialysis or transplantation available or initiated; or doubling of the baseline serum creatinine level. RESULTS: The trial was stopped prematurely after the second interim efficacy analysis. After a median follow-up of 32.9 months, the primary end point had occurred in 783 patients (18.3%) assigned to aliskiren as compared with 732 (17.1%) assigned to placebo (hazard ratio, 1.08; 95% confidence interval [CI], 0.98 to 1.20; P=0.12). Effects on secondary renal end points were similar. Systolic and diastolic blood pressures were lower with aliskiren (between-group differences, 1.3 and 0.6 mm Hg, respectively) and the mean reduction in the urinary albumin-to-creatinine ratio was greater (between-group difference, 14 percentage points; 95% CI, 11 to 17). The proportion of patients with hyperkalemia (serum potassium level, ≥6 mmol per liter) was significantly higher in the aliskiren group than in the placebo group (11.2% vs. 7.2%), as was the proportion with reported hypotension (12.1% vs. 8.3%) (P<0.001 for both comparisons). CONCLUSIONS: The addition of aliskiren to standard therapy with renin-angiotensin system blockade in patients with type 2 diabetes who are at high risk for cardiovascular and renal events is not supported by these data and may even be harmful. (Funded by Novartis; ALTITUDE ClinicalTrials.gov number, NCT00549757.).
Resumo:
Cardiac mast cells (MC) are apposed to capillaries within the heart and release renin and proteases capable of metabolizing angiotensins (Ang). Therefore, we hypothesized that mast cell degranulation could alter the rat coronary vascular responsiveness to the arterial delivered Ang I and Ang II, taking into account carboxypeptidase and chymase-1 activities. Hearts from animals that were either pretreated or not with systemic injection of the secretagogue compound 48/80 were isolated and mounted on a Langendorff apparatus to investigate coronary reactivity. The proteolytic activity of the cardiac perfusate from isolated hearts, pretreated or not with the secretagogue, toward Ang I and tetradecapeptide renin substrate was analyzed by HPLC. Coronary vascular reactivity to peptides was not affected by compound 48/80 pretreatment, despite the extensive amount of cardiac MC degranulation. Cardiac MC activation did not modify the generation of both Ang II and Ang 5-10 from Ang I by cardiac perfusate, activities that could be ascribed to MC carboxypeptidase and chymase-1, respectively. An aliskiren-resistant Ang I-forming activity was increased in perfusates from secretagogue-treated hearts. Thus, cardiac MC proteases capable of metabolizing angiotensins do not affect rat coronary reactivity to arterial delivered Ang I and II. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Objective Activation of the renal renin-angiotensin system in patients with diabetes mellitus appears to contribute to the risk of nephropathy. Recently, it has been recognized than an elevation of prorenin in plasma also provides a strong indication of risk of nephropathy. This study was designed to examine renin-angiotensin system control mechanisms in the patient with diabetes mellitus.Methods We enrolled 43 individuals with type 2 diabetes mellitus. All individuals were on a high-salt diet to minimize the contribution of the systemic renin-angiotensin system. After an acute exposure to captopril (25 mg), they were randomized to treatment with either irbesartan (300 mg) or aliskiren (300 mg) for 2 weeks.Results All agents acutely lowered blood pressure and plasma aldosterone, and increased renal plasma flow and glomerular filtration rate. Yet, only captopril and aliskiren acutely increased plasma renin and decreased plasma angiotensin II, whereas irbesartan acutely affected neither renin nor angiotensin II. Plasma renin and angiotensin II subsequently did increase upon chronic irbesartan treatment. When given on day 14, irbesartan and aliskiren again induced the above hemodynamic, renal and adrenal effects, yet without significantly changing plasma renin. Irbesartan at that time did not affect plasma angiotensin II, whereas aliskiren lowered it to almost zero.Conclusion The relative resistance of the renal renin response to acute (irbesartan) and chronic (irbesartan and aliskiren) renin-angiotensin system blockade supports the concept of an activated renal renin-angiotensin system in diabetes, particularly at the level of the juxtaglomerular cell, and implies that diabetic patients might require higher doses of renin-angiotensin system blockers to fully suppress the renal renin-angiotensin system. J Hypertens 29: 2454-2461 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.