980 resultados para algal biomass


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the spatial and seasonal variability of phytoplankton biomass (as phytoplankton color) in relation to the environmental conditions in the North Sea using data from the Continuous Plankton Recorder survey. By using only environmental fields and location as predictor variables we developed a nonparametric model (generalized additive model) to empirically explore how key environmental factors modulate the spatio-temporal patterns of the seasonal cycle of algal biomass as well as how these relate to the ,1988 North Sea regime shift. Solar radiation, as manifest through changes of sea surface temperature (SST), was a key factor not only in the seasonal cycle but also as a driver of the shift. The pronounced increase in SST and in wind speed after the 1980s resulted in an extension of the season favorable for phytoplankton growth. Nutrients appeared to be unimportant as explanatory variables for the observed spatio-temporal pattern, implying that they were not generally limiting factors. Under the new climatic regime the carrying capacity of the whole system has been increased and the southern North Sea, where the environmental changes have been more pronounced, reached a new maximum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the 1980s, a rapid increase in the Phytoplankton Colour Index (PCI), a semiquantitative visual estimate of algal biomass, was observed in the North Sea as part of a regionwide regime shift. Two new data sets created from the relationship between the PCI and SeaWiFS chlorophyll a (Chl a) quantify differences in the previous and current regimes for both the anthropogenically affected coastal North Sea and the comparatively unaffected open North Sea. The new regime maintains a 13% higher Chl a concentration in the open North Sea and a 21% higher concentration in coastal North Sea waters. However, the current regime has lower total nitrogen and total phosphorus concentrations than the previous regime, although the molar N: P ratio in coastal waters is now well above the Redfield ratio and continually increasing. Besides becoming warmer, North Sea waters are also becoming clearer (i.e., less turbid), thereby allowing the normally light-limited coastal phytoplankton to more effectively utilize lower concentrations of nutrients. Linear regression analyses indicate that winter Secchi depth and sea surface temperature are the most important predictors of coastal Chl a, while Atlantic inflow is the best predictor of open Chl a; nutrient concentrations are not a significant predictor in either model. Thus, despite decreasing nutrient concentrations, Chl a continues to increase, suggesting that climatic variability and water transparency may be more important than nutrient concentrations to phytoplankton production at the scale of this study.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reviews some practical aspects of the application of algal biomass for the biosorption of heavy metals from wastewater. The ability of different algal species to remove metals varies with algal group and morphology, with the speciation of specific metals and their competition with others in wastewater, and with environmental or process factors. The scattered literature on the uptake of heavy metals by both living and dead algal biomass - both macroalgae and immobilized microalgae - has been reviewed, and the uptake capacity and efficiency of different species, as well as what is known about the mechanisms of biosorption, are presented. Data on metal uptake have commonly been fitted to equilibrium models, such as the Langmuir and Freundlich isotherm models, and the parameters of these models permit the uptake capacity of different algal species under different process conditions to be compared. Higher uptake capacities have been found for brown algae than for red and green algae. Kelps and fucoids are the most important groups of algae used for biosorption of heavy metals, probably because of their abundant cell wall polysacchrides and extracellular polymers. Another important practical aspect is the possibility of re-using algal biomass in several adsorption/desorption cycles (up to 10 have been used with Sargassum spp), and the influence of morphology and environmental conditions on the re-usability of algal tissue is also considered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human consumption of long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) is below recommendations, and enriching chicken meat (by incorporating LC n-3 PUFA into broiler diets) is a viable means of increasing consumption. Fish oil is the most common LC n-3 PUFA supplement used but is unsustainable and reduces the oxidative stability of the meat. The objective of this experiment was to compare fresh fish oil (FFO) with fish oil encapsulated (EFO) in a gelatin matrix (to maintain its oxidative stability) and algal biomass at a low (LAG, 11), medium (MAG, 22), or high (HAG, 33 g/kg of diet) level of inclusion. The C22:6n-3 contents of the FFO, EFO, and MAG diets were equal. A control (CON) diet using blended vegetable oil was also made. As-hatched 1-d-old Ross 308 broilers (144) were reared (21 d) on a common starter diet then allocated to treatment pens (4 pens per treatment, 6 birds per pen) and fed treatment diets for 21 d before being slaughtered. Breast and leg meat was analyzed (per pen) for fatty acids, and cooked samples (2 pens per treatment) were analyzed for volatile aldehydes. Concentrations (mg/100 g of meat) of C20:5n-3, C22:5n-3, and C22:6n-3 were (respectively) CON: 4, 15, 24; FFO: 31, 46, 129; EFO: 18, 27, 122; LAG: 9, 19, 111; MAG: 6, 16, 147; and HAG: 9, 14, 187 (SEM: 2.4, 3.6, 13.1) in breast meat and CON: 4, 12, 9; FFO: 58, 56, 132; EFO: 63, 49, 153; LAG: 13, 14, 101; MAG: 11, 15, 102; HAG: 37, 37, 203 (SEM: 7.8, 6.7, 14.4) in leg meat. Cooked EFO and HAG leg meat was more oxidized (5.2 mg of hexanal/kg of meat) than the other meats (mean 2.2 mg/kg, SEM 0.63). It is concluded that algal biomass is as effective as fish oil at enriching broiler diets with C22:6 LC n-3 PUFA, and at equal C22:6n-3 contents, there is no significant difference between these 2 supplements on the oxidative stability of the meat that is produced.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mortality of corals is increasing due to bleaching, disease and algal overgrowth. In the Caribbean, low rates of coral recruitment contribute to the slow or undetectable rates of recovery in reef ecosystems. Although algae have long been suspected to interfere with coral recruitment, the mechanisms of that interaction remain unclear. We experimentally tested the effects of turf algal abundance on 3 sequential factors important to recruitment of corals: the biophysical delivery of planktonic coral larvae, their propensity to settle, and the availability of microhabitats where they survive. We deployed coral settlement plates inside and outside damselfish Stegastes spp. gardens and cages. Damselfish aggression reduced herbivory from fishes, and cages became fouled with turf algae, both locally increasing algal biomass surrounding the plates. This reduced flushing rates in nursery microhabitats on the plate underside, limiting larvae available for settlement. Coral spat settled preferentially on an early successional crustose coralline alga Titanoderma prototypum but also on or near other coralline algae, biofilms, and calcareous polychaete worm tubes. Post-settlement survival was highest in the fully grazed, lowest algal biomass treatment, and after 27 mo 'spat' densities were 73 % higher in this treatment. The 'gauntlet' refers to the sequence of ecological processes through which corals must survive to recruit. The highest proportion of coral spat successfully running the gauntlet did so under conditions of low algal biomass resulting from increased herbivory. If coral recruitment is heavily controlled at very local scales by this gauntlet, then coral reef managers could improve a reef's recruitment potential by managing for reduced algal biomass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Vertical fluxes of phytoplankton (VF_phyto) and particulate organic carbon (VF_POC) in the White Sea were determined using seven long-term (292 to 296 days) sediment traps moored at five stations at depths 67 to 255 m. Annual VF_phyto and VF_POC ranged from 0.55 to 24.64 g C/m**2 and from 3.7 to 93.9 g C/m**2, respectively. The highest VF_phyto was observed in the Basin region located close to the Gorlo along the Tersk coast. Algal biomass accounted for 15-43% of VF_pOC. Diatoms comprised the most important group accounting for 83-100% in sinking biomass. Thalassiosira nordenskioeldii dominated in VF_phyto at all trap stations except for one in the Basin close to the Onega Bay, where Ditylum brightwellii was the most abundant.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With near-complete replacement of Arctic multi-year ice (MYI) by first-year ice (FYI) predicted to occur within this century, it remains uncertain how the loss of MYI will impact the abundance and distribution of sea ice associated algae. In this study we compare the chlorophyll a (chl a) concentrations and physical properties of MYI and FYI from the Lincoln Sea during 3 spring seasons (2010-2012). Cores were analysed for texture, salinity, and chl a. We identified annual growth layers for 7 of 11 MYI cores and found no significant differences in chl a concentration between the bottom first-year-ice portions of MYI, upper old-ice portions of MYI, and FYI cores. Overall, the maximum chl a concentrations were observed at the bottom of young FYI. However, there were no significant differences in chl a concentrations between MYI and FYI. This suggests little or no change in algal biomass with a shift from MYI to FYI and that the spatial extent and regional variability of refrozen leads and younger FYI will likely be key factors governing future changes in Arctic sea ice algal biomass. Bottom-integrated chl a concentrations showed negative logistic relationships with snow depth and bulk (snow plus ice) integrated extinction coefficients; indicating a strong influence of snow cover in controlling bottom ice algal biomass. The maximum bottom MYI chl a concentration was observed in a hummock, representing the thickest ice with lowest snow depth of this study. Hence, in this and other studies MYI chl a biomass may be under-estimated due to an under-representation of thick MYI (e.g., hummocks), which typically have a relatively thin snowpack allowing for increased light transmission. Therefore, we suggest the on-going loss of MYI in the Arctic Ocean may have a larger impact on ice-associated production than generally assumed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nessa pesquisa são relatados os resultados da determinação das concentrações de microcistina e de biomassa algal após as várias etapas de tratamento de amostras de água coletadas junto ao reservatório de Barra Bonita-SP visando obtenção de água potável. O tratamento foi realizado em escala de laboratório com e sem aplicação de carvão ativado em pó (CAP) e as etapas foram: coagulação com aplicação de cloreto férrico, sedimentação, filtração em papel de filtro. Foi possível observar que a pré-clarificação desse tipo de água por coagulação seguida de sedimentação requereu dosagens relativamente elevadas de cloreto férrico (80 mg/L), tendo sido verificada eficiência muito baixa de remoção de microcistina nas etapas de tratamento por sedimentação seguida de filtração, quando não foi aplicado CAP. Apenas com a aplicação de CAP a microcistina foi reduzida à níveis que atendessem os padrões de potabilidade previstos na Portaria 518/04 (concentração menor que 1 μg/L). A determinação de microcistina pelo método que utiliza Imunoadsorventes Ligados à Enzima (ELISA) mostrou-se uma ferramenta útil e confiável para detectar e quantificar essa toxina, embora ainda apresente custo relativamente elevado.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aquatic biomass is seen as one of the major feedstocks to overcome difficulties associated with 1st generation biofuels, such as competition with food production, change of land use and further environmental issues. Although, this finding is widely accepted only little work has been carried out to investigate thermo-chemical conversion of algal specimen to produce biofuels, power and heat. This work aims at contributing fundamental knowledge for thermo-chemical processing of aquatic biomass via intermediate pyrolysis. Therefore, it was necessary to install and commission an analytical pyrolysis apparatus which facilitates intermediate pyrolysis process conditions as well as subsequent separation and detection of pyrolysates (Py- GC/MS). In addition, a methodology was established to analyse aquatic biomass under intermediate conditions by Thermo-Gravimetric Analysis (TGA). Several microalgae (e.g. Chlamydomonas reinhardtii, Chlorella vulgaris) and macroalgae specimen (e.g. Fucus vesiculosus) from main algal divisions and various natural habitats (fresh and saline water, temperate and polar climates) were chosen and their thermal degradation under intermediate pyrolysis conditions was studied. In addition, it was of interest to examine the contribution of biochemical constituents of algal biomass onto the chemical compounds contained in pyrolysates. Therefore, lipid and protein fractions were extracted from microalgae biomass and analysed separately. Furthermore, investigations of residual algal materials obtained by extraction of high valuable compounds (e.g. lipids, proteins, enzymes) were included to evaluate their potential for intermediate pyrolysis processing. On basis of these thermal degradation studies, possible applications of algal biomass and from there derived materials in the Bio-thermal Valorisation of Biomass-process (BtVB-process) are presented. It was of interest to evaluate the combination of the production of high valuable products and bioenergy generation derived by micro- and macro algal biomass.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The main consequence of eutrophication is an increase in algal biomass, mainly cyanobacterial blooms. The high evaporation and low precipitation, characteristics of semiarid regions, contribute to the nutrients availability increase in drought periods and consequent aggravation of eutrophic condition in reservoirs. Climate changes tend to intensify eutrophication symptoms, mostly in a semiarid region. Therefore, the aim of this study was to evaluate the impact of an extended drought in algal biomass in Parelhas’s Boqueirão, a mesotrophic reservoir located in a semiarid tropical region. The low volume was associated to water quality degradation and to the high nutrients concentrations and low water transparency. The increase in nutrients availability in the water column, consequence of reduced precipitation and low reservoir’s volume, provided the necessary resources for algal growth and allowed a change in trophic state in Boqueirão reservoir. This study showed how an extended drought decreases water quality. The effect of drought in Boqueirão was late detected due to the reservoir´s low initial nutrients concentration. The reservoir´s volume reduction increased the nutrient availability along with the algal biomass increase and the reservoir´s trophic state change of mesotrophic to eutrophic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coral reefs can exist as coral- and macroalgae-dominated habitats often separated by only a few hundred metres. While herbivorous fish are known to depress the abundance of algae and help maintain the function of coral-dominated habitats, less is known about their influence in algae-dominated habitats. Here, we quantified herbivorous fish and benthic algal communities over a 6 mo period in coral-dominated (back-reef) and algal-dominated (lagoon) habitats in a relatively undisturbed fringing coral reef (Ningaloo, Western Australia). Simulta - neously, we tested the effects of herbivorous fish on algal recruitment in both habitats using recruitment tiles and fish exclusion cages. The composition of established algal communities differed consistently between habitats, with the back-reef hosting a more diverse community than the Sargassum-dominated lagoon. However, total algal biomass and cover only differed between habitats in autumn, coinciding with maximum Sargassum biomass. The back-reef hosted high coral cover and a diverse herbivorous fish community, with herbivore biomass an order of magnitude greater than the lagoon. Despite these differences in herbivore composition, exclusion of large herbivores had a similar positive effect to foliose macroalgae recruitment on experimental tiles in both back-reef and lagoon habitats. Additionally, territorial damselfish found in the backreef increased turf algae cover and decreased crustose coralline algae cover on recruitment tiles. Collectively, our results show that disparate herbivorous fish communities in coral- and algaedominated habitats are similarly able to limit the recruitment of foliose macroalgae, but suggest that when herbivorous fish biomass and diversity are relatively low, macroalgal communities are able to escape herbivore control through increased growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested direct and indirect measures of benthic metabolism as indicators of stream ecosystem health across a known agricultural land-use disturbance gradient in southeast Queensland, Australia. Gross primary production (GPP) and respiration (R24) in benthic chambers in cobble and sediment habitats, algal biomass (as chlorophyll a) from cobbles and sediment cores, algal biomass accrual on artificial substrates and stable carbon isotope ratios of aquatic plants and benthic sediments were measured at 53 stream sites, ranging from undisturbed subtropical rainforest to catchments where improved pasture and intensive cropping are major land-uses. Rates of benthic GPP and R24 varied by more than two orders of magnitude across the study gradient. Generalised linear regression modelling explained 80% or more of the variation in these two indicators when sediment and cobble substrate dominated sites were considered separately, and both catchment and reach scale descriptors of the disturbance gradient were important in explaining this variation. Model fits were poor for net daily benthic metabolism (NDM) and production to respiration ratio (P/R). Algal biomass accrual on artificial substrate and stable carbon isotope ratios of aquatic plants and benthic sediment were the best of the indirect indicators, with regression model R2 values of 50% or greater. Model fits were poor for algal biomass on natural substrates for cobble sites and all sites. None of these indirect measures of benthic metabolism was a good surrogate for measured GPP. Direct measures of benthic metabolism, GPP and R24, and several indirect measures were good indicators of stream ecosystem health and are recommended in assessing process-related responses to riparian and catchment land use change and the success of ecosystem rehabilitation actions.