956 resultados para air temperature and relative humidity
Resumo:
This study aimed to assess measurements of temperature and relative humidity obtained with HOBO a data logger, under various conditions of exposure to solar radiation, comparing them with those obtained through the use of a temperature/relative humidity probe and a copper-constantan thermocouple psychrometer, which are considered the standards for obtaining such measurements. Data were collected over a 6-day period (from 25 March to 1 April, 2010), during which the equipment was monitored continuously and simultaneously. We employed the following combinations of equipment and conditions: a HOBO data logger in full sunlight; a HOBO data logger shielded within a white plastic cup with windows for air circulation; a HOBO data logger shielded within a gill-type shelter (multi-plate prototype plastic); a copper-constantan thermocouple psychrometer exposed to natural ventilation and protected from sunlight; and a temperature/relative humidity probe under a commercial, multi-plate radiation shield. Comparisons between the measurements obtained with the various devices were made on the basis of statistical indicators: linear regression, with coefficient of determination; index of agreement; maximum absolute error; and mean absolute error. The prototype multi-plate shelter (gill-type) used in order to protect the HOBO data logger was found to provide the best protection against the effects of solar radiation on measurements of temperature and relative humidity. The precision and accuracy of a device that measures temperature and relative humidity depend on an efficient shelter that minimizes the interference caused by solar radiation, thereby avoiding erroneous analysis of the data obtained.
The dependence of clear-sky outgoing longwave radiation on surface temperature and relative humidity
Resumo:
A simulation of the earth's clear-sky long-wave radiation budget is used to examine the dependence of clear-sky outgoing long-wave radiation (OLR) on surface temperature and relative humidity. the simulation uses the European Centre for Medium-Range Weather Forecasts global reanalysed fields to calculate clear-sky OLR over the period from January 1979 to December 1993, thus allowing the seasonal and interannual time-scales to be resolved. the clear-sky OLR is shown to be primarily dependent on temperature changes at high latitudes and on changes in relative humidity at lower latitudes. Regions exhibiting a ‘super-greenhouse’ effect are identified and are explained by considering the changes in the convective regime associated with the Hadley circulation over the seasonal cycle, and with the Walker circulation over the interannual time-scale. the sensitivity of clear-sky OLR to changes in relative humidity diminishes with increasing relative humidity. This is explained by the increasing saturation of the water-vapour absorption bands with increased moisture. By allowing the relative humidity to vary in specified vertical slabs of the troposphere over an interannual time-scale it is shown that changes in humidity in the mid troposphere (400 to 700 hPa) are of most importance in explaining clear-sky OLR variations. Relative humidity variations do not appear to affect the positive thermodynamic water-vapour feedback significantly in response to surface temperature changes.
Resumo:
This study was conducted to assess the effects of incubation temperature (34 C, 36[degree]C and 38[degree]C) and relative humidity (RH, 50% and 60%) on egg weight loss, embryo mortality, hatchability, incubation time and chick weight in eggs from red-winged tinamou. The eggs were placed in incubators that were operated at 34[degree]C, 36[degree]C, or 38[degree]C and 50% or 60% RH (mean wet bulb temperatures of 28[degree]C and 30[degree]C, respectively) from day 1 to hatching. Each treatment had two replicate groups of 30 eggs each. Hatchability varied with incubation temperature and RH and was highest for eggs incubated at 36[degree]C and 60% RH and lowest for eggs incubated at 38[degree]C. Early, intermediate and late embryo mortality were highest at 38[degree]C, 38[degree]C/50% RH, and 50% RH, respectively. Incubation period was longest at 34[degree]C and shortest at 38[degree]C/50% RH. Present results show the highest hatchability of red-winged tinamou eggs after incubation at 36[degree]C and 60% RH; highest embryo sensitivity to high temperature in the early period of incubation (1 to 7 days), to high temperature and low RH in the second period of incubation (8-14 days) and to low RH in the late period of incubation (after 15 days) and shortest incubation period with increasing temperature and RH.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Thirty-two Polwarth ewes, of ages up to 1 year, were observed in a climatic chamber (24 to 45° C) for eight periods of 5 h each. The observations were made through a window in the chamber wall. All animals were observed four times, then shorn and observed four times again. The animals were given weighed quantities of water and feed consisting of commercial concentrate plus Rhodes grass (Chloris gayana) hay. The water and feed remaining after 5 h of observation were weighed. The following traits were analysed: time eating hay (TEH), time eating concentrate (TEC), time drinking water (TDW), weight of hay eaten (WHE), weight of concentrate eaten (WCE), volume of ingested water (VIW), ruminating time standing up (RTS), ruminating time lying down (RTL), idling time standing up (ITS), and idling time lying down (ITL). Shearing had a significant effect for all traits except ITS. Shearing resulted in higher values for all traits except for ITS and ITL. Ingestion of hay (TEH and WHE) decreased with increased air temperature and humidity, while the ingestion of concentrate (TEC) and WHE) and water (TDW and VIW) increased. Rumination decreased with increased air temperature and humidity, and was higher in shorn than in unshorn sheep. © 1992 International Society of Biometeorology.
Resumo:
The objective was to study the leaf temperature (LT) and leaf diffusive vapor conductance (gs) responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD) of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.
Resumo:
The objective was to study the leaf temperature (LT) and leaf diffusive vapor conductance (gs) responses to temperature, humidity and incident flux density of photosynthetically active photons (PPFD) of tomato plants grown without water restriction in a plastic greenhouse in Santa Maria, RS, Brazil. The plants were grown in substrate and irrigated daily. The gs was measured using a steady-state null-balance porometer on the abaxial face of the leaves during the daytime. Both leaf surfaces were measured in one day. The PPFD and LT were measured using the porometer. Leaf temperature was determined using an infrared thermometer, and air temperature and humidity were measured using a thermohygrograph. The leaves on the upper layer of the plants had higher gs than the lower layer. The relationship between the gs and PPFD was different for the two layers in the plants. A consistent relationship between the gs and atmospheric water demand was observed only in the lower layer. The LT tended to be lower than the air temperature. The mean value for the gs was 2.88 times higher on the abaxial than adaxial leaf surface.
Resumo:
High temperatures and relative humidity can compromise animal welfare on the farm level, but less is known about those changes during long distance transport of domestic animals to slaughter. Although upper temperature limits have been established to transport pigs in Europe, few indices include relative or absolute humidity maxima or mention appropriate enthalpy ranges.
Resumo:
BACKGROUND: A number of epidemiological studies have examined the adverse effect of air pollution on mortality and morbidity. Also, several studies have investigated the associations between air pollution and specific-cause diseases including arrhythmia, myocardial infarction, and heart failure. However, little is known about the relationship between air pollution and the onset of hypertension. OBJECTIVE: To explore the risk effect of particulate matter air pollution on the emergency hospital visits (EHVs) for hypertension in Beijing, China. METHODS: We gathered data on daily EHVs for hypertension, fine particulate matter less than 2.5 microm in aerodynamic diameter (PM(2.5)), particulate matter less than 10 microm in aerodynamic diameter (PM(10)), sulfur dioxide, and nitrogen dioxide in Beijing, China during 2007. A time-stratified case-crossover design with distributed lag model was used to evaluate associations between ambient air pollutants and hypertension. Daily mean temperature and relative humidity were controlled in all models. RESULTS: There were 1,491 EHVs for hypertension during the study period. In single pollutant models, an increase in 10 microg/m(3) in PM(2.5) and PM(10) was associated with EHVs for hypertension with odds ratios (overall effect of five days) of 1.084 (95% confidence interval (CI): 1.028, 1.139) and 1.060% (95% CI: 1.020, 1.101), respectively. CONCLUSION: Elevated levels of ambient particulate matters are associated with an increase in EHVs for hypertension in Beijing, China.
Resumo:
Background: A number of epidemiological studies have been conducted to research the adverse effects of air pollution on mortality and morbidity. Hypertension is the most important risk factor for cardiovascular mortality. However, few previous studies have examined the relationship between gaseous air pollution and morbidity for hypertension. ---------- Methods: Daily data on emergency hospital visits (EHVs) for hypertension were collected from the Peking University Third Hospital. Daily data on gaseous air pollutants (sulfur dioxide (SO2) and nitrogen dioxide (NO2)) and particulate matter less than 10 μm in aerodynamic diameter (PM10) were collected from the Beijing Municipal Environmental Monitoring Center. A time-stratified case-crossover design was conducted to evaluate the relationship between urban gaseous air pollution and EHVs for hypertension. Temperature and relative humidity were controlled for. ---------- Results: In the single air pollutant models, a 10 μg/m3 increase in SO2 and NO2 were significantly associated with EHVs for hypertension. The odds ratios (ORs) were 1.037 (95% confidence interval (CI): 1.004-1.071) for SO2 at lag 0 day, and 1.101 (95% CI: 1.038-1.168) for NO2 at lag 3 day. After controlling for PM10, the ORs associated with SO2 and NO2 were 1.025 (95% CI: 0.987-1.065) and 1.114 (95% CI: 1.037-1.195), respectively.---------- Conclusion: Elevated urban gaseous air pollution was associated with increased EHVs for hypertension in Beijing, China.
Resumo:
Background In the last 20 years, there has been an increase in the incidence of allergic respiratory diseases worldwide and exposure to air pollution has been discussed as one of the factors associated with this increase. The objective of this study was to investigate the effects of air pollution on peak expiratory flow (PEF) and FEV1 in children with and without allergic sensitization. Methods Ninety-six children were followed from April to July, 2004 with spirometry measurements. They were tested for allergic sensitization (IgE, skin prick test, eosinophilia) and asked about allergic symptoms. Air pollution, temperature, and relative humidity data were available. Results Decrements in PEF were observed with previous 24-hr average exposure to air pollution, as well as with 310-day average exposure and were associated mainly with PM10, NO2, and O3 in all three categories of allergic sensitization. Even though allergic sensitized children tended to present larger decrements in the PEF measurements they were not statistically different from the non-allergic sensitized. Decrements in FEV1 were observed mainly with previous 24-hr average exposure and 3-day moving average. Conclusions Decrements in PEF associated with air pollution were observed in children independent from their allergic sensitization status. Their daily exposure to air pollution can be responsible for a chronic inflammatory process that might impair their lung growth and later their lung function in adulthood. Am. J. Ind. Med. 55:10871098, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The aim of this study was to examine the variation in body surface temperature of grey seal (Halichoerus grypus) pups throughout lactation in response to different environmental conditions. Radiative surface temperatures (T r, °C) of pups were measured on the Isle of May (56°11′N, 02°33′W), southeast Scotland from 29 October to 25 November 2003. Records were obtained from a total of 60 pups (32 female and 28 male) from three different pupping sites during early and late lactation. Pups were sheltered from high wind speeds but air temperature, humidity and solar radiation at pupping sites were similar to general meteorological conditions. The mean T r of all pups was 15.8°C (range 7.7–29.7°C) at an average air temperature of 10.2°C (range 6.5–13.8°C). There was no difference in the mean T r of pups between early and late lactation. However, the T r varied between different regions of the body with hind flippers on average 2–6°C warmer than all other areas measured. There was no difference in mean T r of male and female pups and pup body mass did not account for the variation in T r during early or late lactation. Throughout the day there was an increase in the T r of pups and this explained 20–28% of the variation in T r depending on stage of lactation. There was no difference in the mean T r of pups between pupping sites or associated with different substrate types. Wind speed and substrate temperature had no effect on the T r of pups. However, solar radiation, air temperature and relative humidity accounted for 48% of the variation in mean T r of pups during early lactation. During late lactation air temperature and solar radiation alone accounted for 43% of the variation in T r. These results indicate that environmental conditions explain only some of the variation in T r of grey seal pups in natural conditions. Differences in T r however indicate that the cost of thermoregulation for pups will vary throughout lactation. Further studies examining intrinsic factors such as blubber thickness and activity levels are necessary before developing reliable biophysical models for grey seals.
Resumo:
In this paper climate discrete-time dynamic models for the inside air temperature of a soilless greenhouse are identified, using data acquired during two different periods of the year. These models employ data from air temperature and relative humidity.
Resumo:
This paper fully describes a nation-wide field study on building thermal environment and thermal comfort of occupant, which was carried out in summer 2005 and in winter 2006 respectively in China, illustrating the adaptive strategies adopted by occupants in domestic buildings in China. According to the climate division in China, the buildings in Beijing (BJ), Shanghai (SH), Wuhan (WH) and Chongqing (CQ), Guangzhou (GZ), Kunming (KM), were selected as targets which are corresponding to cold zone, hot summer and cold winter zone (SWC-SH, WH, CQ), hot summer and warm winter zone and temperate zone, respectively. The methodology used in the field study is the combination of subjective questionnaire regarding thermal sensation and adaptive approaches and physical environmental monitoring including indoor air temperature and relative humidity. A total of 1671 subjects participate in this investigation with more than 80% response rate in all surveyed cities. Both physiological and non-physiological factors (behavioural and psychological adaptations) have been analysed.