993 resultados para air separation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

An economic analysis has been performed to establish when it is advantageous to use structured packing in air separation plant. A model of a low pressure cycle was developed to calculate the power saved when packing is used, and cost models were developed for the columns and cold box. The rate of return was calculated on the extra investment required for a packed plant based on the annual power saving. Structured packing was found to be economic only in larger plants, where economies of scale mean that the increased capital cost becomes less significant compared with the power saved. It was also found that different sized plants favour different packings. The analysis identified that the packing variable with the biggest impact on the economic balance was the efficiency and that increasing the efficiency of current packings could enhance their balance in air distillation. A new packing was therefore developed to have a higher efficiency than conventional ones. The vapour phase resistance was targeted for reduction, since most packing models predict this to be dominant. The final shape was chosen as the easiest and most economic to make. It has converging and diverging channels and was manufactured in two specific areas and with two block heights by Tianjin University Packing Factory. A 0.3 m diameter distillation column test rig was designed, built and commissioned with the standard Sulzer Mellapak 500YW. It was then used to test the new packing alongside some standard ones. Because the packings had different specific areas, correlations of published results were developed to allow a true comparison to be made. The test results show that, unexpectedly, the packings with 0.1 m high blocks have an efficiency about 8% greater than the standard 0.2 m blocks. The new shape as implemented in the 350Y packing shows an additional 7% greater efficiency, so it is 15% better than a standard packing with the same area. It has a better efficiency than the Mellapak 500YW and the higher capacity associated with its lower area. The new 500Y did not show a significant advantage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

"Seventeen peer-reviewed papers cover the latest research on the ignition and combustion of metals and non-metals, oxygen compatibility of components and systems, analysis of ignition and combustion, failure analysis and safety. It includes aerospace, military, scuba diving, and industrial oxygen applications. Topics cover: • Development of safe oxygen systems • Ignition mechanisms within oxygen systems and how to avoid them • Specific hazards that exist with the oxygen mixture breathed by divers in the scuba industry • Issues related to oxygen system level safety • Issues related to oxygen safety in breathing systems • Detailed investigations and discussions related to the burn curves that have been generated for metals that are burning in a standard test fixture This new publication is a valuable resource for professionals in the air separation industries, oxygen manufacturers, manufacturers of materials intended for oxygen service, and users of oxygen and oxygen-enriched atmospheres, including aerospace, medical, industrial gases, chemical processing, steel and metals refining, as well as to military, commercial or recreational diving."--- publisher website

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High temperature ceramic membranes have interesting possibilities for application in areas of new and developing technologies such as hydrocarbon combustion with carbon dioxide capture and electrochemical promotion of catalysis (EPOC). However, membrane module sealing remains a significant technical challenge. In this work a borosilicate glass sealant (50SiO2·25B2O3·25Na2O, mol%) was developed to fit the requirements of sealing an air separation membrane system at intermediate temperatures (300-600 °C). The seal was assessed by testing the leak rates under a range of conditions. The parameters tested included the effect of flowrate on the leak rate, the heating and cooling rates of the reactor and the range of temperatures under which the system could operate. Tests for durability and reliability were also performed. It was found that the most favourable reactor configuration employed a reactor with the ceramic pellet placed underneath the inner chamber alumina tube (inverted configuration), using a quartz wool support to keep the membrane in place prior to sealing. Using this configuration the new glass-based seal was found to be a more suitable sealant than traditional alternatives; it produced lower leak rates at all desirable flowrates, with the potential for rapid heating and cooling and multiple cycling, allowing for prolonged usage. © 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research of new advanced processes for syngas production is a part of a European project for the production of a new Gas to Liquid Process (NextGTL). The crucial points in the production of GTL process are the energy required for the air separation used in autothermal reforming or the heat required for steam reforming and the efficiency in carbon utilization. Therefore a new multistep oxy-reforming process scheme was developed at lower temperature with intermediate H2 membrane separation to improve the crucial parameter. The process is characterized by a S/C of 0.7 and O2/C of 0.21 having a smoothed temperature profile in which kinetic regime is easily obtained. Active catalysts for low temperature oxy-reforming process have been studied working at low pressure to discriminate among the catalyst and at high pressure to prove it on industrial condition. It allows the selection of the Rh as active phase among single and bimetallic VIII group metal. The study of the matrix composition and thermal treatment has been carried out on Rh-Mg/Al hydrotalcite selected as reference catalyst. The research to optimize the catalyst lead to enhanced performances through the identification of a limitation of the Rh reduction from the oxides matrix as key point to increase the Rh performances. The Rh loading have been studied to allow the catalyst scale up for pilot process in Chieti in a shape of Rh-HT on honeycomb ceramic material. The developed catalyst has enhanced methane conversion in a inch diameter monolith reactor if compared with the semi-industrial catalyst chosen in the project as the best reference.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A visual basic application for Microsoft® Excel 2007 has been developed as a helpful tool to perform mass, energy, exergy and thermoeconomic (MHBT) calculations during the systematic analysis of energy processes simulated with Aspen Plus®. The application reads an Excel workbook containing three sheets with the matter, work and heat streams results of an Aspen Plus® simulation. The required information from the Aspen Plus® simulation and the algorithm/calculations of the application are described and applied to an Air Separation Unit (ASU). This application helps the designer when MHBT analyses are performed, as it increases the knowledge of the process simulated with Aspen Plus®. It’s a valuable tool not only because of the calculations performed, but also because it creates a new Excel workbook where the results and the formulae written on the cells are fully visible and editable. There is free access to the application and it has no protection allowing changes and improvements to be done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen adsorption at 77 K is the current standard means for pore size determination of adsorbent materials. However, nitrogen adsorption reaches limitations when dealing with materials such as molecular sieving carbon with a high degree of ultramicroporosity. In this investigation, methane and carbon dioxide adsorption is explored as a possible alternative to the standard nitrogen probe. Methane and carbon dioxide adsorption equilibria and kinetics are measured in a commercially derived carbon molecular sieve over a range of temperatures. The pore size distribution is determined from the adsorption equilibrium, and the kinetics of adsorption is shown to be Fickian for carbon dioxide and non-Fickian for methane. The non-Fickian response is attributed to transport resistance at the pore mouth experienced by the methane molecules but not by the carbon dioxide molecules. Additionally, the change in the rate of adsorption with loading is characterized by the Darken relation in the case of carbon dioxide diffusion but is greater than that predicted by the Darken relation for methane transport. Furthermore, the proposition of inkbottle-shaped micropores in molecular sieving carbon is supported by the determination of the activation energy for the transport of methane and subsequent sizing of the pore-mouth barrier by molecular potential calculations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Setf-supported asymmetric hollow-fiber membranes of mixed oxygen-ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) were prepared by a combined phase-inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA-citrate complexing process followed by thermal treatment at 600 degrees C. The powder was dispersed in a polymer solution and then extruded into hollow-fiber precursors through a spinneret. ne fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow-fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol-m(-2).s(-1) at 950 degrees C with the sweep gas flow rate of 0.522 mol(.)m(-2).s(-1). To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. (c) 2006 American Institute of Chemical Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The goals of this project are to develop a Reactive Air Brazing (RAB) alloy and process for joining Barium strontium cobalt ferrite (BSCF), and to develop a fundamental understanding of the wettability and microstructral development due to reaction kinetics in BSCF/Ag-MexOy systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Use of Unmanned Aerial Vehicles (UAVs) in support of government applications has already seen significant growth and the potential for use of UAVs in commercial applications is expected to rapidly expand in the near future. However, the issue remains on how such automated or operator-controlled aircraft can be safely integrated into current airspace. If the goal of integration is to be realized, issues regarding safe separation in densely populated airspace must be investigated. This paper investigates automated separation management concepts in uncontrolled airspace that may help prepare for an expected growth of UAVs in Class G airspace. Not only are such investigations helpful for the UAV integration issue, the automated separation management concepts investigated by the authors can also be useful for the development of new or improved Air Traffic Control services in remote regions without any existing infrastructure. The paper will also provide an overview of the Smart Skies program and discuss the corresponding Smart Skies research and development effort to evaluate aircraft separation management algorithms using simulations involving realworld data communication channels, and verified against actual flight trials. This paper presents results from a unique flight test concept that uses real-time flight test data from Australia over existing commercial communication channels to a control center in Seattle for real-time separation management of actual and simulated aircraft. The paper also assesses the performance of an automated aircraft separation manager.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New air traffic automated separation management concepts are constantly under investigation. Yet most of the automated separation management algorithms proposed over the last few decades have assumed either perfect communication or exact knowledge of all aircraft locations. In realistic environments, these idealized assumptions are not valid and any communication failure can potentially lead to disastrous outcomes. This paper examines the separation performance behavior of several popular algorithms during periods of information loss. This comparison is done through simulation studies. These simulation studies suggest that communication failure can cause the performance of these separation management algorithms to degrade significantly. This paper also describes some preliminary flight tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes a novel automated separation management concept in which onboard decision support is integrated within a centralised air traffic separation management system. The onboard decision support system involves a decentralised separation manager that can overrule air traffic management instructions under certain circumstances. This approach allows the advantages of both centralised and decentralised concepts to be combined (and disadvantages of each separation management approach to be mitigated). Simulation studies are used to illustrate the potential benefits of the combined separation management concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Future air traffic management concepts often involve the proposal of automated separation management algorithms that replaces human air traffic controllers. This paper proposes a new type of automated separation management algorithm (based on the satisficing approach) that utilizes inter-aircraft communication and a track file manager (or bank of Kalman filters) that is capable of resolving conflicts during periods of communication failure. The proposed separation management algorithm is tested in a range of flight scenarios involving during periods of communication failure, in both simulation and flight test (flight tests were conducted as part of the Smart Skies project). The intention of the conducted flight tests was to investigate the benefits of using inter-aircraft communication to provide an extra layer of safety protection in support air traffic management during periods of failure of the communication network. These benefits were confirmed.