994 resultados para air leakage


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this article is to report the experience of design and testing of orifice plate-based flow measuring systems for evaluation of air leakages in components of air conditioning systems. Two of the flow measuring stations were designed with a beta value of 0.405 and 0.418. The third was a dual path unit with orifice plates of beta value 0.613 and 0.525. The flow rates covered with all the four were from 4-94 l/s and the range of Reynolds numbers is from 5600 to 76,000. The coefficients of discharge were evaluated and compared with the Stolz equation. Measured C-d values are generally higher than those obtained from the equation, the deviations being larger in the low Reynolds number region. Further, it is observed that a second-degree polynomial is inadequate to relate the pressure drop and flow rate. The lower Reynolds number limits set by standards appear to be somewhat conservative.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The need for efficient, sustainable, and planned utilization of resources is ever more critical. In the U.S. alone, buildings consume 34.8 Quadrillion (1015) BTU of energy annually at a cost of $1.4 Trillion. Of this energy 58% is utilized for heating and air conditioning. Several building energy analysis tools have been developed to assess energy demands and lifecycle energy costs in buildings. Such analyses are also essential for an efficient HVAC design that overcomes the pitfalls of an under/over-designed system. DOE-2 is among the most widely known full building energy analysis models. It also constitutes the simulation engine of other prominent software such as eQUEST, EnergyPro, PowerDOE. Therefore, it is essential that DOE-2 energy simulations be characterized by high accuracy. Infiltration is an uncontrolled process through which outside air leaks into a building. Studies have estimated infiltration to account for up to 50% of a building’s energy demand. This, considered alongside the annual cost of buildings energy consumption, reveals the costs of air infiltration. It also stresses the need that prominent building energy simulation engines accurately account for its impact. In this research the relative accuracy of current air infiltration calculation methods is evaluated against an intricate Multiphysics Hygrothermal CFD building envelope analysis. The full-scale CFD analysis is based on a meticulous representation of cracking in building envelopes and on real-life conditions. The research found that even the most advanced current infiltration methods, including in DOE-2, are at up to 96.13% relative error versus CFD analysis. An Enhanced Model for Combined Heat and Air Infiltration Simulation was developed. The model resulted in 91.6% improvement in relative accuracy over current models. It reduces error versus CFD analysis to less than 4.5% while requiring less than 1% of the time required for such a complex hygrothermal analysis. The algorithm used in our model was demonstrated to be easy to integrate into DOE-2 and other engines as a standalone method for evaluating infiltration heat loads. This will vastly increase the accuracy of such simulation engines while maintaining their speed and ease of use characteristics that make them very widely used in building design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large amounts of money due to product recalls, consumer impact and subsequent loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and microorganisms to enter the package. In the food processing and packaging industry worldwide, there is an increasing demand for cost effective state of the art inspection technologies that are capable of reliably detecting leaky seals and delivering products at six-sigma. The new technology will develop non-destructive testing technology using digital imaging and sensing combined with a differential vacuum technique to assess seal integrity of food packages on a high-speed production line. The cost of leaky packages in Australian food industries is estimated close to AUD $35 Million per year. Contamination of packaged foods due to micro-organisms entering through air leaks can cause serious public health issues and cost companies large sums of money due to product recalls, compensation claims and loss of market share. The main source of contamination is leaks in packaging which allow air, moisture and micro-organisms to enter the package. Flexible plastic packages are widely used, and are the least expensive form of retaining the quality of the product. These packets can be used to seal, and therefore maximise, the shelf life of both dry and moist products. The seals of food packages need to be airtight so that the food content is not contaminated due to contact with microorganisms that enter as a result of air leakage. Airtight seals also extend the shelf life of packaged foods, and manufacturers attempt to prevent food products with leaky seals being sold to consumers. There are many current NDT (non-destructive testing) methods of testing the seal of flexible packages best suited to random sampling, and for laboratory purposes. The three most commonly used methods are vacuum/pressure decay, bubble test, and helium leak detection. Although these methods can detect very fine leaks, they are limited by their high processing time and are not viable in a production line. Two nondestructive in-line packaging inspection machines are currently available and are discussed in the literature review. The detailed design and development of the High-Speed Sensing and Detection System (HSDS) is the fundamental requirement of this project and the future prototype and production unit. Successful laboratory testing was completed and a methodical design procedure was needed for a successful concept. The Mechanical tests confirmed the vacuum hypothesis and seal integrity with good consistent results. Electrically, the testing also provided solid results to enable the researcher to move the project forward with a certain amount of confidence. The laboratory design testing allowed the researcher to confirm theoretical assumptions before moving into the detailed design phase. Discussion on the development of the alternative concepts in both mechanical and electrical disciplines enables the researcher to make an informed decision. Each major mechanical and electrical component is detailed through the research and design process. The design procedure methodically works through the various major functions both from a mechanical and electrical perspective. It opens up alternative ideas for the major components that although are sometimes not practical in this application, show that the researcher has exhausted all engineering and functionality thoughts. Further concepts were then designed and developed for the entire HSDS unit based on previous practice and theory. In the future, it would be envisaged that both the Prototype and Production version of the HSDS would utilise standard industry available components, manufactured and distributed locally. Future research and testing of the prototype unit could result in a successful trial unit being incorporated in a working food processing production environment. Recommendations and future works are discussed, along with options in other food processing and packaging disciplines, and other areas in the non-food processing industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Despite numerous studies on endotracheal tube cuff pressure (CP) management, the literature has yet to establish a technique capable of adequately tilling the cuff with an appropriate volume of air while generating low CP in a less subjective way. the purpose of this prospective study was to evaluate and compare the CP levels and air volume required to fill the endotracheal tubes cuff using 2 different techniques (volume-time curve versus minimal occlusive volume) in the immediate postoperative period after coronary artery bypass grafting. METHODS: A total of 267 subjects were analyzed. After the surgery, the lungs were ventilated using pressure controlled continuous mandatory ventilation, and the same ventilatory parameters were adjusted. Upon arrival in the ICU, the cuff was completely deflated and re-inflated, and at this point the volume of air to fill the cuff was adjusted using one of 2 randomly selected techniques: volume-time curve and minimal occlusive volume. We measured the volume of air injected into the cuff, the CP, and the expired tidal volume of the mechanical ventilation after the application of each technique. RESULTS: the volume-time curve technique demonstrated a significantly lower CP and a lower volume of air injected into the cuff, compared to the minimal occlusive volume technique (P < .001). No significant difference was observed in the expired tidal volume between the 2 techniques (P = .052). However, when the subjects were submitted to the minimal occlusive volume technique, 17% (n = 47) experienced air leakage as observed by the volume-time graph. CONCLUSIONS: the volume-time curve technique was associated with a lower CP and a lower volume of air injected into the cuff, when compared to the minimal occlusive volume technique in the immediate postoperative period after coronary artery bypass grafting. Therefore, the volume-time curve may be a more reliable alternative for endotracheal tube cuff management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com a crescente sensibilização mundial relativa ao aquecimento global, provocado pela alta quantidade de emissão de gases com efeito de estufa, torna-se imperativa a redução de consumos de combustíveis fósseis e consecutivas emissões. Ao nível da construção civil, uma intervenção eficaz na prevenção de perdas de ar aquecido poderá levar a diminuições superiores a 50% na utilização de energia. Este trabalho pretende estudar a importância da eficiência energética nos edifícios, com especial enfoque na sua permeabilidade ao ar. O ensaio de porta ventiladora permite avaliar esta permeabilidade e identificar os locais onde se dão as infiltrações, nomeadamente com auxílio da câmara térmica. O principal objectivo é estudar a aplicação deste ensaio na legislação em desenvolvimento no âmbito da certificação energética, através da comparação dos resultados de quatro habitações distintas. Também ao nível da eficiência energética, será obtida a classe energética, segundo a legislação em vigor à corrente data em Portugal, de uma das habitaçãoes ensaiadas e propostas medidas de melhoria para o desempenho energético desta. Do estudo efectuado é destacado o facto de o valor de renovações horárias do ar interior de uma fracção ser sempre inferior quando obtido unicamente através da legislação em desenvolvimento, em comparação com a obtenção deste através da legislação com auxílio do ensaio da porta ventiladora, o que leva a um grande desincentivo na utilização deste.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Closed Ecological Systems (CES) are small manmade ecosystems which do not have any material exchange with the surrounding environment. Recent ecological and technological advances enable successful establishment and maintenance of CES, making them a suitable tool for detecting and measuring subtle feedbacks and mechanisms. 2. As a part of an analogue (physical) C cycle modelling experiment, we developed a non-intrusive methodology to control the internal environment and to monitor atmospheric CO2 concentration inside 16 replicated CES. Whilst maintaining an air-tight seal of all CES, this approach allowed for access to the CO2 measuring equipment for periodic re-calibration and repairs. 3. To ensure reliable cross-comparison of CO2 observations between individual CES units and to minimise the cost of the system, only one CO2 sampling unit was used. An ADC BioScientific OP-2 (open-path) analyser mounted on a swinging arm was passing over a set of 16 measuring cells. Each cell was connected to an individual CES with air continuously circulating between them. 4. Using this setup, we were able to continuously measure several environmental variables and CO2 concentration within each closed system, allowing us to study minute effects of changing temperature on C fluxes within each CES. The CES and the measuring cells showed minimal air leakage during an experimental run lasting, on average, 3 months. The CO2 analyser assembly performed reliably for over 2 years, however an early iteration of the present design proved to be sensitive to positioning errors. 5. We indicate how the methodology can be further improved and suggest possible avenues where future CES based research could be applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report describes the work done creating a computer model of a kombi tank from Consolar. The model was created with Presim/Trnsys and Fittrn and DF were used to identify the parameters. Measurements were carried out and were used to identify the values of the parameters in the model. The identifications were first done for every circuit separately. After that, all parameters are normally identified together using all the measurements. Finally the model should be compared with other measurements, preferable realistic ones. The two last steps have not yet been carried out, because of problems finding a good model for the domestic hot water circuit.The model of the domestic hot water circuit give relatively good results for low flows at 5 l/min, but is not good for higher flows. In the report suggestions for improving the model are given. However, there was not enough time to test this within the project as much time was spent trying to solve problems with the model crashing. Suggestions for improving the model for the domestic circuit are given in chapter 4.4. The improved equations that are to be used in the improved model are given by equation 4.18, 4.19 and 4.22.Also for the boiler circuit and the solar circuit there are improvements that can be done. The model presented here has a few shortcomings, but with some extra work, an improved model can be created. In the attachment (Bilaga 1) is a description of the used model and all the identified parameters.A qualitative assessment of the store was also performed based on the measurements and the modelling carried out. The following summary of this can be given: Hot Water PreparationThe principle for controlling the flow on the primary side seems to work well in order to achieve good stratification. Temperatures in the bottom of the store after a short use of hot water, at a coldwater temperature of 12°C, was around 28-30°C. This was almost independent of the temperature in the store and the DHW-flow.The measured UA-values of the heat exchangers are not very reliable, but indicates that the heat transfer rates are much better than for the Conus 500, and in the same range as for other stores tested at SERC.The function of the mixing valve is not perfect (see diagram 4.3, where Tout1 is the outlet hot water temperature, and Tdhwo and Tdhw1 is the inlet temperature to the hot and cold side of the valve respectively). The outlet temperature varies a lot with different temperatures in the storage and is going down from 61°C to 47°C before the cold port is fully closed. This gives a problem to find a suitable temperature setting and gives also a risk that the auxiliary heating is increased instead of the set temperature of the valve, when the hot water temperature is to low.Collector circuitThe UA-value of the collector heat exchanger is much higher than the value for Conus 500, and in the same range as the heat exchangers in other stores tested at SERC.Boiler circuitThe valve in the boiler circuit is used to supply water from the boiler at two different heights, depending on the temperature of the water. At temperatures from the boiler above 58.2°C, all the water is injected to the upper inlet. At temperatures below 53.9°C all the water is injected to the lower inlet. At 56°C the water flow is equally divided between the two inlets. Detailed studies of the behaviour at the upper inlet shows that better accuracy of the model would have been achieved using three double ports in the model instead of two. The shape of the upper inlet makes turbulence, that could be modelled using two different inlets. Heat lossesThe heat losses per m3 are much smaller for the Solus 1050, than for the Conus 500 Storage. However, they are higher than those for some good stores tested at SERC. The pipes that are penetrating the insulation give air leakage and cold bridges, which could be a major part of the losses from the storage. The identified losses from the bottom of the storage are exceptionally high, but have less importance for the heat losses, due to the lower temperatures in the bottom. High losses from the bottom can be caused by air leakage through the insulation at the pipe connections of the storage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

JUSTIFICATIVA E OBJETIVOS: As lesões da mucosa traqueal em contato com o balonete do tubo traqueal são proporcionais à pressão exercida pelo balonete e ao tempo de exposição. O objetivo foi estudar as eventuais lesões da mucosa do segmento traqueal em contato com o balonete do tubo traqueal insuflado com volume de ar suficiente para se obter pressão de "selo" ou com a pressão limite de 25 cmH2O, abaixo da pressão crítica de 30 cm de água para produção de lesão da mucosa traqueal. MÉTODO: Dezesseis cães foram submetidos à anestesia venosa e ventilação artificial. Os cães foram distribuídos aleatoriamente em dois grupos de acordo com a pressão no balonete do tubo traqueal (Portex Blue-Line, Inglaterra): Gselo (n = 8) balonete com pressão mínima de "selo" para impedir vazamento de ar durante a respiração artificial; G25 (n = 8) balonete insuflado até obtenção da pressão de 25 cmH2O. A medida da pressão do balonete foi realizada por meio de manômetro digital no início (controle) e após 60, 120 e 180 minutos. Após o sacrifício dos cães, foram feitas biópsias nas áreas da mucosa traqueal adjacentes ao balonete e ao tubo traqueal para análise à microscopia eletrônica de varredura (MEV). RESULTADOS: A pressão média do balonete em G25 manteve-se entre 24,8 e 25 cmH2O e em Gselo entre 11,9 e 12,5 cmH2O durante o experimento. As alterações à MEV foram pequenas e não significantemente diferentes nos grupos (p > 0,30), mas ocorreram lesões mais intensas nas áreas de contato da mucosa traqueal com o balonete do tubo traqueal, nos dois grupos, em relação às áreas da mucosa adjacentes ou não ao tubo traqueal (p < 0,05). CONCLUSÕES: No cão, nas condições experimentais empregadas, a insuflação do balonete de tubo traqueal em volume de ar suficiente para determinar pressão limite de 25 cmH2O ou de "selo" para impedir vazamento de ar determina lesões mínimas da mucosa traqueal em contato com o balonete e sem diferença significante entre elas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primary spontaneous pneumothorax (PSP) affects young healthy people with a significant recurrence rate. Recent advances in treatment have been variably implemented in clinical practice. This statement reviews the latest developments and concepts to improve clinical management and stimulate further research.The European Respiratory Society's Scientific Committee established a multidisciplinary team of pulmonologists and surgeons to produce a comprehensive review of available scientific evidence.Smoking remains the main risk factor of PSP. Routine smoking cessation is advised. More prospective data are required to better define the PSP population and incidence of recurrence. In first episodes of PSP, treatment approach is driven by symptoms rather than PSP size. The role of bullae rupture as the cause of air leakage remains unclear, implying that any treatment of PSP recurrence includes pleurodesis. Talc poudrage pleurodesis by thoracoscopy is safe, provided calibrated talc is available. Video-assisted thoracic surgery is preferred to thoracotomy as a surgical approach.In first episodes of PSP, aspiration is required only in symptomatic patients. After a persistent or recurrent PSP, definitive treatment including pleurodesis is undertaken. Future randomised controlled trials comparing different strategies are required.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Com este trabalho pretende-se analisar o consumo de energia na indústria de faiança e identificar medidas de poupança energética. Em 2014, o consumo específico foi de 191 kgep/t e a intensidade carbónica 2,15 tCO2e/t, tendo havido uma redução de, respectivamente, 50,2% e 1,3%, comparativamente a 2010. O consumo total correspondeu a 1108 tep, sendo 66% relativo ao consumo de gás natural. Foi utilizado um analisador de energia eléctrica nos principais equipamentos consumidores, e na desagregação de consumos térmicos, efectuaram-se leituras no contador geral de gás natural e foram utilizados dados das auditorias ambiental e energética. O processo de cozedura é responsável por 58% do consumo térmico da instalação, seguido da pintura com 24%. A conformação é o sector com maior consumo de energia eléctrica, correspondendo a 23% do consumo total. As perdas térmicas pelos gases de exaustão dos equipamentos de combustão e pela envolvente do forno, considerando os mecanismos de convecção natural e radiação, correspondem a cerca de 6% do consumo térmico total, sendo necessário tomar medidas a nível do isolamento térmico e da redução do excesso de ar. A instalação de variadores de velocidade nos ventiladores do ar de combustão do forno poderia resultar em poupanças significativas, em particular, no consumo de gás natural – redução de 4 tep/ano e cerca de 2500€/ano– tendo um tempo de retorno do investimento inferior a 1 ano. Deverá ser, no entanto, garantida a alimentação de ar combustão a todos os queimadores, bem como, a combustão completa do gás natural. O funcionamento contínuo do forno poderia resultar no aumento da sua eficiência energética, com redução de custos de operação e manutenção, sendo necessário avaliar os custos adicionais de stock e de mão de obra. Verificou-se que as medidas relacionadas com a monitorização de consumos, eliminação de fugas de ar comprimido e a instalação de variadores de velocidade nos ventiladores do ar de combustão do forno poderiam resultar em reduções de consumo de 26 tep e de emissões de 66tCO2e, num total de quase 14 000€.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apples at 24 ± 2 °C were heated in a pilot scale hot air assisted (40 °C) continuous pentagonal microwave system, to evaluate the effectiveness of this treatment on insect mortality (variety Mutsu) and fruit quality (variety Granny Smith). An average temperature of 53.4 ± 1.3 °C at core, bottom and flesh of the apple was recorded at the end of the treatment. One hundred percent mortality of the most tolerant stage of Queensland fruit fly (Bactrocera tryoni, Froggatt) and Jarvis's fruit fly (Bactrocera jarvisi, Tryon), were observed when the Mortality value (M52, equivalent time of isothermal treatment at 52 °C) at the slowest heating point applicable for each experiment was ≥ 50 min and ≥ 37 min, respectively. Results showed that microwave heat treatment is effective for insect disinfestation without any adverse impact on total soluble solids, flesh or peel firmness of the treated apples. The treated apples recorded a significantly higher pH and lower ion leakage than the untreated apples after 3 or 4 weeks. Therefore, the microwave heat treatment has the potential to be developed as an alternative chemical free quarantine treatment against economically significant insect pests. Industrial relevance Hot air assisted microwave heating of fruits and vegetables, is more cost effective compared to vapour heat treatment and ionising radiation for disinfestation of insects. Microwave treatment is environmentally friendly compared to fumigation and chemical treatments. Hot air assisted microwave disinfestation can be performed at farms or centralised pack houses since the capital cost would be comparatively lower than vapour heat or ionising radiation treatments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.