981 resultados para agrometeorological station
Resumo:
A developed and sustainable agriculture requires a permanent and reliable monitoring of climatic/ meteorological elements in (agro) meteorological stations which should be located close to agricultural, silvicultural or pastoral activities. An adequate network of meteorological stations is then a necessary condition to support innovation and development in any country. Developing countries, mainly those with a history of frequent conflicts, presents deficient number of weather stations, often poorly composed and improperly distributed within their territories, and without a regular operation that allows continuity of records for a sufficiently long period of time. The objective of this work was to build a network of meteorological and agro-meteorological stations in East Timor. To achieve this goal, the number and location of pre-existing stations, their structure and composition (number and type of sensors, communication system,… ), the administrative division of the country and the available agro-ecological zoning, the agricultural and forestry practices in the country, the existing centres for the agricultural research and the history of the weathers records were taken into account. Several troubles were found (some of the automatic stations were assembled incorrectly, others stations duplicated information regarding the same agricultural area, vast areas with relevant agro-ecological representativeness were not monitored …). It was proposed the elimination of 11 existing stations, the relocation of 7 new stations in places not covered until then, the automation of 3 manual meteorological stations. Two networks were then purposed, a major with 15 agro-meteorological stations (all automatized) and one other secondary composed by 32 weather stations (only two were manual). The set of the 47 stations corresponded to a density of 329 km2/station. The flexibility in the composition of each of the networks was safeguarded and intends to respond effectively to any substantive change in the conditions in a country in constant change. It was also discussed the national coverage by these networks under a “management concept for weather stations”.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
La agricultura de Mendoza está expuesta a daños producidos por viento Zonda, cuya frecuencia y magnitud no han sido suficientemente estudiadas. Por ello se ha procurado determinar las características de los vientos Zonda y la probabilidad de que sean afectados cultivos de vid, olivo y frutales. Se tuvieron en cuenta los Zondas registrados durante 44 años (1958-2002) por la estación agrometeorológica Chacras de Coria de la Facultad de Ciencias Agrarias de la UNCuyo, en el período de floración de las principales variedades de los cultivos mencionados. El análisis se realizó cada diez días mediante los parámetros que se consignan a continuación: Salto térmico: diferencia entre las temperaturas máximas del día anterior y del día con Zonda, subdividido en las siguientes categorías: leve: 1 a 5 °C; fuerte: 6 a 10 °C; severo: mayor de 10 °C. Poder secante: evaporación del día del evento subdividido en las siguientes categorías: pequeño: 1 a 6 mm/día; grande: 7 a 12mm/día; muy grande: superior a 12 mm/día. Duración del evento, subdividido en las siguientes categorías: corta: 1a 8 hs; larga: 9 a 16 hs; muy larga: superior a 16 hs. La interacción y combinación de estos parámetros en sus diversas magnitudes determina el efecto dañino del Zonda representado a través del Índice Climático de Peligrosidad (ICP) de los vientos, que demues tra que todo el período estudiado tiene algún grado de riesgo. Se concluye que: El 47 % del total de casos de viento Zonda corresponde a agosto y la primera semana de septiembre. Las probabilidades de ocurrencia de un salto térmico severo están circunscriptas a agosto y primeros días de septiembre. En todo el período existen probabilidades superiores al 2 % de que ocurra un Zonda con poder secante muy grande. Eventos de muy larga duración tienen relativamente alta probabilidad de ocurrencia en agosto y primeros días de septiembre. Se puede determinar la probabilidad de daño para un cultivo confrontado los valores del ICP con la fenodata de plena floración correspondiente, lo cual constituye una herramienta para la defensa pasiva. Se suministran las fenodatas de las principales variedades de vid, olivo, duraznero y ciruelo, que son las especies cultivadas más importantes en el área de influencia de la estación agrometeorológica de Chacras de Coria.
Resumo:
Traffic emissions are an important contributor to ambient air pollution, especially in large cities featuring extensive and high density traffic networks. Bus fleets represent a significant part of inner city traffic causing an increase in exposure to general public, passengers and drivers along bus routes and at bus stations. Limited information is available on quantification of the levels, and governing parameters affecting the air pollution exposure at bus stations. The presented study investigated the bus emissions-dominated ambient air in a large, inner city bus station, with a specific focus on submicrometer particles. The study’s objectives were (i) quantification of the concentration levels; (ii) characterisation of the spatio-temporal variation; (iii) identification of the parameters governing the emissions levels at the bus station and (iv) assessment of the relationship between particle concentrations measured at the street level (background) and within the bus station. The results show that up to 90% of the emissions at the station are ultrafine particles (smaller than 100 nm), with the concentration levels up to 10 times the value of urban ambient air background (annual) and up to 4 times the local ambient air background. The governing parameters affecting particle concentration at the station were bus flow rate and meteorological conditions (wind velocity). Particle concentration followed a diurnal trend, with an increase in the morning and evening, associated with traffic rush hours. Passengers’ exposure could be significant compared to the average outdoor and indoor exposure levels.
Resumo:
Transit agencies across the world are increasingly shifting their fare collection mechanisms towards fully automated systems like the smart card. One of the objectives in implementing such a system is to reduce the boarding time per passenger and hence reduce the overall dwell time for the buses at the bus stops/bus rapid transit (BRT) stations. TransLink, the transit authority responsible for public transport management in South East Queensland, has introduced ‘GoCard’ technology using the Cubic platform for fare collection on its public transport system. In addition to this, three inner city BRT stations on South East Busway spine are operating as pre-paid platforms during evening peak time. This paper evaluates the effects of these multiple policy measures on operation of study busway station. The comparison between pre and post policy scenarios suggests that though boarding time per passenger has decreased, while the alighting time per passenger has increased slightly. However, there is a substantial reduction in operating efficiency was observed at the station.
Resumo:
Network RTK (Real-Time Kinematic) is a technology that is based on GPS (Global Positioning System) or more generally on GNSS (Global Navigation Satellite System) measurements to achieve centimeter-level accuracy positioning in real-time. Reference station placement is an important problem in the design and deployment of network RTK systems as it directly affects the quality of the positioning service and the cost of the network RTK systems. This paper identifies a new reference station placement for network RTK, namely QoS-aware regional network RTK reference station placement problem, and proposes an algorithm for the new reference station placement problem. The algorithm can always produce a reference station placement solution that completely covers the region of network RTK.
Resumo:
Station track allocation is the critical component in the overall railway timetabling. Because of its intrinsic complexity and lack of modeling on station track layouts and train movement within station, analytical approach to attain optimal solution is not feasible. This study investigates the possibilities of applying a heuristic approach and identifies possible difficulties in practice. It is the first and important step to resolve one of the burning issues in the mainline railway operation in China.
Resumo:
This paper presents the simulation model development of passenger flow in a metro station. The model allows studies of passenger flow in stations with different layouts and facilities, thus providing valuable information, such as passenger flow and density of passenger at critical locations and passenger-handling facilities within a station, to the operators. The adoption of the concept of Petri nets in the simulation model is discussed. Examples are provided to demonstrate its application to passenger flow analysis, train scheduling and the testing of alternative station layouts.
Resumo:
A composite line source emission (CLSE) model was developed to specifically quantify exposure levels and describe the spatial variability of vehicle emissions in traffic interrupted microenvironments. This model took into account the complexity of vehicle movements in the queue, as well as different emission rates relevant to various driving conditions (cruise, decelerate, idle and accelerate), and it utilised multi-representative segments to capture the accurate emission distribution for real vehicle flow. Hence, this model was able to quickly quantify the time spent in each segment within the considered zone, as well as the composition and position of the requisite segments based on the vehicle fleet information, which not only helped to quantify the enhanced emissions at critical locations, but it also helped to define the emission source distribution of the disrupted steady flow for further dispersion modelling. The model then was applied to estimate particle number emissions at a bi-directional bus station used by diesel and compressed natural gas fuelled buses. It was found that the acceleration distance was of critical importance when estimating particle number emission, since the highest emissions occurred in sections where most of the buses were accelerating and no significant increases were observed at locations where they idled. It was also shown that emissions at the front end of the platform were 43 times greater than at the rear of the platform. Although the CLSE model is intended to be applied in traffic management and transport analysis systems for the evaluation of exposure, as well as the simulation of vehicle emissions in traffic interrupted microenvironments, the bus station model can also be used for the input of initial source definitions in future dispersion models.
Resumo:
The paper provides an assessment of the performance of commercial Real Time Kinematic (RTK) systems over longer than recommended inter-station distances. The experiments were set up to test and analyse solutions from the i-MAX, MAX and VRS systems being operated with three triangle shaped network cells, each having an average inter-station distance of 69km, 118km and 166km. The performance characteristics appraised included initialization success rate, initialization time, RTK position accuracy and availability, ambiguity resolution risk and RTK integrity risk in order to provide a wider perspective of the performance of the testing systems. ----- ----- The results showed that the performances of all network RTK solutions assessed were affected by the increase in the inter-station distances to similar degrees. The MAX solution achieved the highest initialization success rate of 96.6% on average, albeit with a longer initialisation time. Two VRS approaches achieved lower initialization success rate of 80% over the large triangle. In terms of RTK positioning accuracy after successful initialisation, the results indicated a good agreement between the actual error growth in both horizontal and vertical components and the accuracy specified in the RMS and part per million (ppm) values by the manufacturers. ----- ----- Additionally, the VRS approaches performed better than the MAX and i-MAX when being tested under the standard triangle network with a mean inter-station distance of 69km. However as the inter-station distance increases, the network RTK software may fail to generate VRS correction and then may turn to operate in the nearest single-base RTK (or RAW) mode. The position uncertainty reached beyond 2 meters occasionally, showing that the RTK rover software was using an incorrect ambiguity fixed solution to estimate the rover position rather than automatically dropping back to using an ambiguity float solution. Results identified that the risk of incorrectly resolving ambiguities reached 18%, 20%, 13% and 25% for i-MAX, MAX, Leica VRS and Trimble VRS respectively when operating over the large triangle network. Additionally, the Coordinate Quality indicator values given by the Leica GX1230 GG rover receiver tended to be over-optimistic and not functioning well with the identification of incorrectly fixed integer ambiguity solutions. In summary, this independent assessment has identified some problems and failures that can occur in all of the systems tested, especially when being pushed beyond the recommended limits. While such failures are expected, they can offer useful insights into where users should be wary and how manufacturers might improve their products. The results also demonstrate that integrity monitoring of RTK solutions is indeed necessary for precision applications, thus deserving serious attention from researchers and system providers.
Resumo:
The common approach to estimate bus dwell time at a BRT station is to apply the traditional dwell time methodology derived for suburban bus stops. In spite of being sensitive to boarding and alighting passenger numbers and to some extent towards fare collection media, these traditional dwell time models do not account for the platform crowding. Moreover, they fall short in accounting for the effects of passenger/s walking along a relatively longer BRT platform. Using the experience from Brisbane busway (BRT) stations, a new variable, Bus Lost Time (LT), is introduced in traditional dwell time model. The bus lost time variable captures the impact of passenger walking and platform crowding on bus dwell time. These are two characteristics which differentiate a BRT station from a bus stop. This paper reports the development of a methodology to estimate bus lost time experienced by buses at a BRT platform. Results were compared with the Transit Capacity and Quality of Servce Manual (TCQSM) approach of dwell time and station capacity estimation. When the bus lost time was used in dwell time calculations it was found that the BRT station platform capacity reduced by 10.1%.