863 resultados para aging and drying process


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New silica-polypropyleneglycol ormosils (organically modified silicates) with covalent bends between the organic (polymer) and inorganic (silica) phases have been prepared by the sol-gel process. Their structural evolution during sol formation, sol-gel transition, gel aging and drying has been studied in situ by small-angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and gels exhibit features expected from fractal objects. Clusters of size around 55 Angstrom with an initial fractal dimension D = 2.4 are formed in the sol. They are constituted of small primary silica particles chemically crosslinked at the end of the polymer chains. A strong liquid-like spatial correlation between the silica particles develops during drying due to the shrinkage of the polymeric network induced by water and ethanol evaporation. The continuous increase in SAXS intensity during drying, while the interparticle distance remains constant, is a consequence of the progressive growth of the dry fraction of the total volume. After drying, the gel structure consists of a rather compact arrangement of silica particles embedded in the polypropyleneglycol matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development and Characterization of L-Alanyl-L-Glutamine Containing Pellets employing Extrusion-Spheronization Method and Drying Process in Fluidized Bad Equipment"". In this work, five formulations of L-alanyl-L-glutamine (glutamine dipeptide) containing pellets with different drug concentration were developed and evaluated: F1 (9.07%); F2 (17.70%); F3 (27.98%); F4 (37.74%) e F5 (47.53%). Pellets were prepared by extrusion-spheronization method and, further, dried in fluidized bad equipment. The following assays were carried out with the batches obtained: granulometry, friability, true density and morphologic analysis. Between the five formulations evaluated, pellets obtained from F3 present best yield (75.80%), most uniform particle size distribution (89.67% of pellets with size in the range of 0.80 to 1.18), most high true density (2.1634 g/ml) and best aspect (1.0795 +/- 0.0410). Due to these features, pellets obtained from F3 were considered adequate to further polymeric coating process in order to produce a multiparticulate system to prolong L-alanyl-L-glutamine release.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractMaize is considered a source of carotenoids; however, these compounds are highly unstable, degraded by high temperatures, exposure to light and presence of oxygen. The objective of this work was to evaluate the influence of the moisture and type of drying applied to grains on the level of carotenoids in yellow maize. The experiment was conducted in a completely randomized design (2 × 4 factorial), two levels of initial moisture at the harvest (22 and 19%) and three types of drying (in the sun; in the shade and in a dryer) and control (no drying). The samples of grains after drying with 12% of final moisture were analyzed by concentration of total carotenoids, carotenes (α-carotene + β-carotene), monohydroxilated carotenoids (β-cryptoxanthin), and xanthophylls (lutein + zeaxanthin). Initial moisture, type of drying and the interaction between moisture versus drying influence (p≤0.05) the levels of carotenoids in grains. This is the first report about the drying conditions and harvest’s initial moisture as influence on the profile and content of carotenoids in maize grains. Based on the results, this work suggested that the harvest be carried out preferably when the grains present 22% humidity, with drying in a dryer or in shade for further use or storage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Kinetic simulation and drying process optimization of corn malt by Simulated Annealing (SA) for estimation of temperature and time parameters in order to preserve maximum amylase activity in the obtained product are presented here. Germinated corn seeds were dried at 54-76 °C in a convective dryer, with occasional measurement of moisture content and enzymatic activity. The experimental data obtained were submitted to modeling. Simulation and optimization of the drying process were made by using the SA method, a randomized improvement algorithm, analogous to the simulated annealing process. Results showed that seeds were best dried between 3h and 5h. Among the models used in this work, the kinetic model of water diffusion into corn seeds showed the best fitting. Drying temperature and time showed a square influence on the enzymatic activity. Optimization through SA showed the best condition at 54 ºC and between 5.6h and 6.4h of drying. Values of specific activity in the corn malt were found between 5.26±0.06 SKB/mg and 15.69±0,10% of remaining moisture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a new route of preparation of zirconium ceramic foams based on the thermostimulated sol-gel process. This method produces gelled bodies with up to 90% of porosity in the wet gel and can be used to make complex-shaped components. Unfortunately, the shrinkage during the drying step allows to a catastrophic reduction (50%) of the foam porosity. To improve the foam stability we carried out a systematic study of the effect of gel foam aging on the drying process. Samples were aged in closed vessel at 25 C during different time period (from 6 to 240 h). The shrinkage and the mass loss during drying at 50 C were measured in situ, using a non-contact technique performed with a special apparatus. The results show that the total linear shrinkage decreases from 46% to 8% as the aging period increase from 6 to 240 h. This behavior is followed by a small change of total mass loss, from 42 to 54%. It indicates that by aging the structural stiffness of the foams increases due to secondary condensation reactions. Thus, by controlling the aging period, the porosity can be increased from 67 to 75% and the average size of mesopores of dried foams can be screened from 0.3 to 0.9 mum. Finally, these results demonstrate that the thermostimulated sol-gel transition provides a potential route to ceramic foams manufacture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica-poly(oxypropylene) (PPO) nanocomposites containing PPO with weak physical bonds between the organic (PPO) and inorganic (silica) phases were obtained by the sol-gel procedure. Three precursor sols containing silica and PPO with molecular weights of 1000, 2000 and 4000g/mol were prepared. The structure changes during the whole sol-gel process, i.e. sol formation, sol-gel transition and gel aging and drying were investigated in situ by small angle X-ray scattering (SAXS). The experimental SAXS curves corresponding to sols and wet gels containing PPO of molecular weight 1000g/mol indicate that the aggregates formed during the studied process are fractal objects. Close to the sol-gel transition and during gel aging the fractal dimension is D=2.5. A clearly different structure evolution occurs in samples prepared with PPO with molecular weights 2000 and 4000 g/mol. Our SAXS results indicate the presence of two coexisting and well-defined structure levels, one of them corresponding to small silica clusters and the other to large silica aggregates. These two levels remain along the whole transformation. The SAXS curves of all dry samples are similar to those of the corresponding wet gels suggesting that no significant changes at nanoscopic scale occur during the drying process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microparticles obtained by complex coacervation were crosslinked with glutaraldehyde or with transglutaminase and dried using freeze drying or spray drying. Moist samples presented Encapsulation Efficiency (%EE) higher than 96%. The mean diameters ranged from 43.7 ± 3.4 to 96.4 ± 10.3 µm for moist samples, from 38.1 ± 5.36 to 65.2 ± 16.1 µm for dried samples, and from 62.5 ± 7.5 to 106.9 ± 26.1 µm for rehydrated microparticles. The integrity of the particles without crosslinking was maintained when freeze drying was used. After spray drying, only crosslinked samples were able to maintain the wall integrity. Microparticles had a round shape and in the case of dried samples rugged walls apparently without cracks were observed. Core distribution inside the particles was multinuclear and homogeneous and core release was evaluated using anhydrous ethanol. Moist particles crosslinked with glutaraldehyde at the concentration of 1.0 mM.g-1 protein (ptn), were more efficient with respect to the core retention compared to 0.1 mM.g-1 ptn or those crosslinked with transglutaminase (10 U.g-1 ptn). The drying processes had a strong influence on the core release profile reducing the amount released to all dry samples

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to study the effect of air-temperature and diet composition on the mass transfer kinetics during the drying process of pellets used for Japanese Abalone (Haliotis discus hannai) feeding. In the experimental design, three temperatures were used for convective drying, as well as three different diet compositions (Diets A, B and C), in which the amount of fishmeal, spirulin, algae, fish oil and cornstarch varied. The water diffusion coefficient of the pellets was determined using the equation of Fick's second law, which resulted in values between 0.84-1.94×10-10 m²/s. The drying kinetics was modeled using Page, Modified Page, Root of time, Exponential, Logarithmic, Two-Terms, Modified Henderson-Pabis and Weibull models. In addition, two new models, referred to as 'Proposed' models 1 and 2, were used to simulate this process. According to the statistical tests applied, the models that best fitted the experimental data were Modified Henderson-Pabis, Weibull and Proposed model 2, respectively. Bifactorial analysis of variance ANOVA showed that Diet A (fishmeal 44%, spirulin 9%, fish oil 1% and cornstarch 36%) presented the highest diffusion coefficient values, which were favored by the temperature increase in the drying process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drying process of linseed oil, oxidized at 80 oC, has been investigated with rheology measurements, Fourier transformation infrared spectroscopy (FTIR), and time of flight secondary ion mass spectrometry (ToF-SIMS). The drying process can be divided into three main steps: initiation, propagation and termination. ToF-SIMS spectra show that the oxidation is initiated at the linolenic (three double bonds) and linoleic fatty acids (two double bonds). ToF-SIMS spectra reveal peaks that can be assigned to ketones, alcohols and hydroperoxides. In this article it is shown that FTIR in combination with ToF-SIMS are well suited tools for investigations of various fatty acid components and reaction products of linseed oil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electron microscopy (SEM) was used to investigated the effects of volatile solvents (such as water, propanone, ethanol, methanol or ethyl ether), treatment and drying processes, microwave ovens, drying ovens, and vacuum desiccators or freeze driers, on silica morphology. Silica gel was obtained from diluted sodium silicate (1:5 w/w SiO2:H2O). The results showed that the drying process based on freeze drying is more efficient for structural conservation of the precipitate. Treatment with volatile solvents does not change the shape of the aggregates, but has an important role in the determination of aggregate surface roughness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular interactions between microcrystalline cellulose (MCC) and water were investigated by attenuated total reflection infrared (ATR/IR) spectroscopy. Moisture-content-dependent IR spectra during a drying process of wet MCC were measured. In order to distinguish overlapping O–H stretching bands arising from both cellulose and water, principal component analysis (PCA) and, generalized two-dimensional correlation spectroscopy (2DCOS) and second derivative analysis were applied to the obtained spectra. Four typical drying stages were clearly separated by PCA, and spectral variations in each stage were analyzed by 2DCOS. In the drying time range of 0–41 min, a decrease in the broad band around 3390 cm−1 was observed, indicating that bulk water was evaporated. In the drying time range of 49–195 min, decreases in the bands at 3412, 3344 and 3286 cm−1 assigned to the O6H6cdots, three dots, centeredO3′ interchain hydrogen bonds (H-bonds), the O3H3cdots, three dots, centeredO5 intrachain H-bonds and the H-bonds in Iβ phase in MCC, respectively, were observed. The result of the second derivative analysis suggests that water molecules mainly interact with the O6H6cdots, three dots, centeredO3′ interchain H-bonds. Thus, the H-bonding network in MCC is stabilized by H-bonds between OH groups constructing O6H6cdots, three dots, centeredO3′ interchain H-bonds and water, and the removal of the water molecules induces changes in the H-bonding network in MCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim this work was develop gastro-resistant pellets of didanosine as well as study the impact on the pellets properties, regarding the way as the binder was added and drying process used. The pellets formation was accompanied by analysis of morphological parameters and didanosine dissolution. In the most cases, pellets showed diameter around 1.0 mm and shape parameters acceptable. The variations of the process did not interfere significantly in pellets size. In turn, drying in fluid bed favored the dissolution of didanosine, in contrast to binder addition on powder form that impaired. In another hand, this last resulted in the best aspect factor (about 1.1). Gastro-resistant pellets showed adequate dissolution, compatible with this type of dosage form. The variables of process studied enabled obtain pellets with characteristics of shape and dissolution just slightly different, indicating flexibility of the formulation for production of gastro-resistant pellets of didanosine.