849 resultados para ageing, dementia, driving, reaction time


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of interictal epileptic activity (IEA) on driving is a rarely investigated issue. We analyzed the impact of IEA on reaction time in a pilot study. Reactions to simple visual stimuli (light flash) in the Flash test or complex visual stimuli (obstacle on a road) in a modified car driving computer game, the Steer Clear, were measured during IEA bursts and unremarkable electroencephalography (EEG) periods. Individual epilepsy patients showed slower reaction times (RTs) during generalized IEA compared to RTs during unremarkable EEG periods. RT differences were approximately 300 ms (p < 0.001) in the Flash test and approximately 200 ms (p < 0.001) in the Steer Clear. Prior work suggested that RT differences >100 ms may become clinically relevant. This occurred in 40% of patients in the Flash test and in up to 50% in the Steer Clear. When RT were pooled, mean RT differences were 157 ms in the Flash test (p < 0.0001) and 116 ms in the Steer Clear (p < 0.0001). Generalized IEA of short duration seems to impair brain function, that is, the ability to react. The reaction-time EEG could be used routinely to assess driving ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Highway Administration, Office of Safety and Traffic Operations Research and Development, McLean, Va.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-resolved resonance Raman spectroscopy (TR3) has been used to study the effect of solvent polarity on the mechanism and nature of intermediates formed in photoinduced electron-transfer reaction between triplet flouranil ((FL)-F-3) and tetramethylbenzene (TMB). Comparison of the TR3 spectra in polar, nonpolar, and medium polar media suggests that formation of radical anion due to electron-transfer reaction between (FL)-F-3 and TMB is favored in more polar solvents, whereas ketyl radical formation is more favored in less polar media. Compared to ketyl radical, the extent of radical anion formation is negligible in nonpolar solvents. Therefore, it is inferred that in nonpolar media ketyl radical is mainly generated by hydrogen-transfer reaction in the encounter complex between (FL)-F-3 and TMB. In solvents of medium polarity, the ion-pair decay leads to the formation of both ketyl radical and ketyl radical formed from the encounter between triplet state and the donor. Thus, competition between the formation of ketyl radical and ion pair is influenced by the solvent polarity. The nature of the ion pair in different solvent polarity has been investigated from the changes observed in the vibrational frequency of (fluoranil) FL part of the complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information and Communication Technology (ICT) is becoming increasingly central to many people’s lives, making it possible to be connected in any place at any time, be unceasingly and instantly informed, and benefit from greater economic and educational opportunities. With all the benefits afforded by these new-found capabilities, however, come potential drawbacks. A plethora of new PCs, laptops, tablets, smartphones, Bluetooth, the internet, Wi-Fi (the list goes on) expect us to know or be able to guess, what, where and when to connect, click, double-click, tap, flick, scroll, in order to realise these benefits, and to have the physical and cognitive capability to do all these things. One of the groups most affected by this increase in high-demand technology is older people. They do not understand and use technology in the same way that younger generations do, because they grew up in the simpler electro-mechanical era and embedded that particular model of the world in their minds. Any consequential difficulty in familiarising themselves with modern ICT and effectively applying it to their needs can also be exacerbated by age-related changes in vision, motor control and cognitive functioning. Such challenges lead to digital exclusion. Much has been written about this topic over the years, usually by academics from the area of inclusive product design. The issue is complex and it is fair to say that no one researcher has the whole picture. It is difficult to understand and adequately address the issue of digital exclusion among the older generation without looking across disciplines and at industry’s and government’s understanding, motivation and efforts toward resolving this important problem. To do otherwise is to risk misunderstanding the true impact that ICT has and could have on people’s lives across all generations. In this European year of Active Ageing and Solidarity between Generations and as the British government is moving forward with its Digital by Default initiative as part of a wider objective to make ICT accessible to as many people as possible by 2015, the Engineering Design Centre (EDC) at the University of Cambridge collaborated with BT to produce a book of thought pieces to address, and where appropriate redress, these important and long-standing issues. “Ageing, Adaption and Accessibility: Time for the Inclusive Revolution!” brings together opinions and insights from twenty one prominent thought leaders from government, industry and academia regarding the problems, opportunities and strategies for combating digital exclusion among senior citizens. The contributing experts were selected as individuals, rather than representatives of organisations, to provide the broadest possible range of perspectives. They are renowned in their respective fields and their opinions are formed not only from their own work, but also from the contributions of others in their area. Their views were elicited through conversations conducted by the editors of this book who then drafted the thought pieces to be edited and approved by the experts. We hope that this unique collection of thought pieces will give you a broader perspective on ageing, people’s adaption to the ever changing world of technology and insights into better ways of designing digital devices and services for the older population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. the skin neurogenic inflammation is mainly related to Substance P (SP) and Calcitonin Gene-related Peptide (CGRP). There is no data on their availability in the dynamics of skin nerve endings, concerning their release and replenishment after a nociceptive stimulus, so this was investigated. Materials and methods. 25 rats were randomly distributed in 5 groups. the animals of the control group (CG) determined the baseline levels of neuropeptides in the skin. the groups S0 and S30 did not receive any cutaneous stimulus at 30 and 60 minutes, respectively. in the group S1, an incision stimulus was made at 30 minutes. in the group S31, a nociceptive stimulus was performed by subdermal scratching at 30 minutes and, at 60 minutes, the incision stimulus was carried out in the same location (nociceptive hyperstimulation). the skin samples of the other animals were harvested from the back 1 minute after their death. SP, pro-CGRP and CGRP were quantified by Western Blotting. Results. the incision stimulus released SP, S1 compared to S0 (p < 0.05) detected in the first minute, and the replenishment time was more than 30 minutes. Also, it cleaved pro-CGRP, S1 compared to S31 (p < 0.05) in the first minute, and its replenishment time less than 30 minutes. Release of CGRP was not detected. Conclusion. the incision released SP already detected in the first minute; its replenishment time is more than 30 minutes. the incision decreased pro-CGRP, also detected in the first minute; and its replenishment time is less than 30 minutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This series of experiments investigated the role of a prefrontal cortical-dorsal striatal circuit in attention, using a continuous performance task of sustained and spatially divided visual attention. A unilateral excitotoxic lesion of the medial prefrontal cortex and a contralateral lesion of the medial caudate-putamen were used to "disconnect" the circuit. Control groups of rats with unilateral lesions of either structure were tested in the same task. Behavioral controls included testing the effects of the disconnection lesion on Pavlovian discriminated approach behavior. The disconnection lesion produced a significant reduction in the accuracy of performance in the attentional task but did not impair Pavlovian approach behavior or affect locomotor or motivational variables, providing evidence for the involvement of this medial prefrontal corticostriatal system in aspects of visual attentional function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of visual stimuli intensity on manual reaction time (RT) was investigated under two different attentional settings: high (Experiment 1) and low (Experiment 2) stimulus location predictability. These two experiments were also run under both binocular and monocular viewing conditions. We observed that RT decreased as stimulus intensity increased. It also decreased as the viewing condition was changed from monocular to binocular as well as the location predictability shifted from low to high. A significant interaction was found between stimulus intensity and viewing condition, but no interaction was observed between neither of these factors and location predictability. These findings support the idea that the stimulus intensity effect arises from purely sensory, pre-attentive mechanisms rather than deriving from more efficient attentional capture. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work particles of ZnO of size range 33-56 Angstrom were prepared by a sol-gel method. The effect of reaction time on the particle size of ZnO or ZnO:Ce was investigated by transmission electron microscopy measurements, UV-vis absorption and luminescence spectroscopy. A linear increase of the mean particle size is observed as a function of reaction time. The cerium-doped particles are bigger than the pure ZnO ones obtained at the same reaction time. A shift to lower energy at the maximum of the bands is observed in all absorption, emission and excitation spectra as a function of particle growth. From the absorption spectra the optical energy gap values (Eg) for these particles were determined. In the quantum size regime, Eg was found to decrease with particle growth.