994 resultados para age hardening


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra low-load-dynamic microhardness testing facilitates the hardness measurements in a very low volume of the material and thus is suited for characterization of the interfaces in MMC's. This paper details the studies on age-hardening behavior of the interfaces in Al-Cu-5SiC(p) composites characterized using this technique. Results of hardness studies have been further substantiated by TEM observations. In the solution-treated condition, hardness is maximum at the particle/matrix interface and decreases with increasing distance from the interface. This could be attributed to the presence of maximum dislocation density at the interface which decreases with increasing distance from the interface. In the case of composites subjected to high temperature aging, hardening at the interface is found to be faster than the bulk matrix and the aging kinetics becomes progressively slower with increasing distance from the interface. This is attributed to the dislocation density gradient at the interface, leading to enhanced nucleation and growth of precipitates at the interface compared to the bulk matrix. TEM observations reveal that the sizes of the precipitates decrease with increasing distance from the interface and thus confirms the retardation in aging kinetics with increasing distance from the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mg-8Gd-0.6Zr-xEr (x = 1, 3 and 5 mass%) alloys were prepared by casting technology, and the microstructures, age hardening behaviors and mechanical properties of alloys have been investigated. Microstructures of the alloys are characterized by the presence of rosette-shaped equiaxed grains. The age hardening behaviors and the tensile properties are enhanced by adding Er element. The maximum aged hardness of Mg-8Gd-0.6Zr-5Er alloy is 97, it is nearly 1.24 times higher than that of Er-free alloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, compositional dependence of age hardening characteristics and tensile properties were investigated for Mg-4Ho-xY-0.6Zr alloys (x = 0, 3 5, and 7 wt%). The result showed that with increasing Y content, the hardness of the alloys increased in the as-quenched and aged-peak conditions. Considerable age hardening response was recognized for the alloys. When the alloy containing 7% Y showed the most remarkable age hardening response at aging temperature of 250 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, compositional dependence of age hardening response and tensile properties were investigated for Mg-10G(d-x)Y-0.4Zr (x = 1, 3, 5 wt.%) alloys. With increasing Y content, the age hardening response of the alloys enhanced and tensile properties increased. The Mg-10Gd-5Y-0.4Zr alloy exhibited maximum tensile strength and yield strength at aged-peak hardness, and the values were 302 MPa and 289 MPa at room temperature, and 340 MPa and 267 MPa at 250 degrees C, respectively. The strong peak age hardening was attributed to the precipitation of prismatic beta' plates in a triangular arrangement. The cubic shaped beta phase was also observed at grain boundaries. The remarkable improvement in strength is associated with a uniform and high dense distribution of beta' and cubic shaped beta precipitate phases in Mg matrix. Elongation of Mg-10Gd-0.4Zr alloys decreased with increasing Y content, and the elongation of Mg-10Gd-5Y-0.4Zr alloy was less than 3% below 250 degrees C, whereas the alloys containing I wt.% and 3 wt.% Y exhibited higher elongation than 5% at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to reduce the cost of Al-Sc alloys and maintain their mechanical properties, the microstructure and mechanical properties of Al-0.24 wt% Sc-0.07 wt% Yb in comparison with Al-0.28 wt% Sc alloys were studied. The aging behaviour, precipitate morphologies, precipitate coarsening and precipitation hardening of both alloys were investigated. The average diameter and the size distribution of nanoscale Al3Sc and Al-3(Sc,Yb) precipitates at various aging conditions were measured. Transmission electron microscopy (TEM) and high-resolution TEM were used to deeply understand the precipitate evolution. A maximum hardness around 73 (HV30) was obtained with a precipitate diameter from 4.3 to 5.6 nm for both alloys. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of wrought alloys of aluminum to which high strength and ductility can be imparted by heat treatment began with the work of Wilm and Claesser in Germany, 1905­-1911. During this time an alloy was developed which was later commercially produced in that country under the tradename of duralumin. The need for strong, light alloys for aircraft during the World War greatly hastened the development of duralumin.