36 resultados para aeroallergens
Resumo:
Background: Indoor aeroallergens are the main cause of sensitization in children and represent a risk factor for the development of allergic diseases. Objective: Identify the major indoor aeroallergens most often sensitized to pediatric patients treated at the Allergy Service at the “Dr. José Eleuterio González” University Hospital of Monterrey Methods: We performed an observational and descriptive study where we reviewed reports of positive skin tests to the following common indoor aeroallergens: Dermatophagoides farinae (D. farinae), Dermatophagoides pteronyssinus (D. pteronyssinus), Canis familiaris (C. familiaris), Felis domesticus (F. domesticus), Blattella germanica (B. germanica) and Periplaneta americana (P. americana), found in patients under 16 years with symptoms of allergy, during the period of 2011-2012. Results: We performed 439 skin tests to aeroallergens in pediatric patients. Of these, 57.6% were male and 42.4% were female. Mean age was 6.3 years. The age groups were under 3 years: 17.8%, 3-5 years: 35%, 6-12 years: 36%, and 13-16 years: 11.2%. The main diagnoses were: allergic rhinitis (71.8%), asthma (16.6%), and atopic dermatitis (4.3%). In 57.9% of the cases, they had at least one positive skin test to any aeroallergen. The rate of sensitization to speciic aeroallergens was: D. Pteronyssinus 49.0%, D. farinae 44.6%, B. germanica 13.9%, P. Americana 10.9%, F. domesticus 10.7%, and C. familiaris 5.9%. Conclusion: Indoor aeroallergen sensitization can occur early in life, although it was more frequent in the preschooler and elementary school group. Dust house mites were the most commom cause of allergic sensitization.
Resumo:
Asthma prevalence in children has remained relatively constant in many Western countries, but hospital admissions for younger age groups have increased over time.1 Although the role of outdoor aeroallergens as triggers for asthma exacerbations requiring hospitalization in children and adolescents is complex, there is evidence that increasing concentrations of grass pollen are associated with an increased risk of asthma exacerbations in children.2 Human rhinovirus (HRV) infections are implicated in most of the serious asthma exacerbations in school-age children.3 In previous research, HRV infections and aeroallergen exposure have usually been studied independently. To our knowledge, only 1 study has examined interactions between these 2 factors,4 but lack of power prevented any meaningful interpretation...
Resumo:
Objective Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. Methods Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the clinical' grass pollen season and grass pollen peak. Results The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. Conclusions These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. Implications: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis.
Resumo:
Background Pollens of the Panicoideae subfamily of grasses including Bahia (Paspalum notatum) are important allergen sources in subtropical regions of the world. An assay for specific IgE to the major molecular allergenic component, Pas n 1, of Bahia grass pollen (BaGP) would have immunodiagnostic utility for patients with pollen allergy in these regions. Methods Biotinylated Pas n 1 purified from BaGP was coated onto streptavidin ImmunoCAPs. Subjects were assessed by clinical history of allergic rhinitis and skin prick test (SPT) to aeroallergens. Serum total, BaGP-specific and Pas n 1-specific IgE were measured. Results: Pas n 1 IgE concentrations were highly correlated with BaGP SPT (r = 0.795, p < 0.0001) and BaGP IgE (r = 0.915, p < 0.0001). At 0.23 kU/l Pas n 1 IgE, the diagnostic sensitivity (92.4%) and specificity (93.1%) for the detection of BaGP allergy was high (area under receiver operator curve 0.960, p < 0.0001). The median concentrations of Pas n 1 IgE in non-Atopic subjects (0.01 kU/l, n = 67) and those with other allergies (0.02 kU/l, n = 59) showed no inter-group difference, whilst grass pollen-Allergic patients with allergic rhinitis showed elevated Pas n 1 IgE (6.71 kU/l, n = 182, p < 0.0001). The inter-Assay coefficient of variation for the BaGP-Allergic serum pool was 6.92%. Conclusions Pas n 1 IgE appears to account for most of the BaGP-specific IgE. This molecular component immunoassay for Pas n 1 IgE has potential utility to improve the sensitivity and accuracy of diagnosis of BaGP allergy for patients in subtropical regions.
Resumo:
Background: Eosinophilic esophagitis (EE) is an emerging condition where patients commonly present with symptoms of gastroesophageal reflux disease and fail to respond adequately to anti-reflux therapy. Food allergy is currently recognized as the main immunological cause of EE; recent evidence suggests an etiological role for inhalant allergens. The presence of EE appears to be associated with other atopic illnesses. Objectives: To report the sensitization profile of both food and inhalant allergens in our EE patient cohort in relation to age, and to profile the prevalence of other allergic conditions in patients with EE. Method: The study prospectively analyzed allergen sensitization profiles using skin prick tests to common food allergens and inhalant allergens in 45 children with EE. Patch testing to common food allergens was performed on 33 patients in the same cohort. Comorbidity of atopic eczema, asthma, allergic rhinitis and anaphylaxis were obtained from patient history. Results: Younger patients with EE showed more IgE and patch sensitization to foods while older patients showed greater IgE sensitization to inhalant allergens. The prevalence of atopic eczema, allergic rhinitis and asthma was significantly increased in our EE cohort compared with the general Australian population. A total of 24% of our cohort of patients with EE had a history of anaphylaxis. Conclusion: In children with EE, the sensitization to inhalant allergens increases with age, particularly after 4 years. Also, specific enquiry about severe food reactions in patients presenting with EE is strongly recommended as it appears this patient group has a high incidence of anaphylaxis. © 2007 The Authors.
Resumo:
Background: There has been a significant growth in the prevalence of allergy, mainly associated to IgE-mediated disorders such as asthma and rhinitis. The identification of atopy in asthmatic patients through the measurement of specific IgE can help to identify risk factors that cause asthmatic symptoms in patients. The development and use of individualized allergen-based tests by the Component Resolved Diagnosis has been a crucial advance in the accurate diagnosis and control of allergic patients. The objective of this work was to assess the usefulness of molecular diagnosis to identify environmental allergens as possible factors influencing the development and manifestation of asthma in a group of asthmatic patients from Iran. Methods: Studied population: 202 adult asthmatic patients treated at the Loghman Hakim Hospital and Pasteur Institute of Teheran (Iran) from 2011 to 2012. Specific IgE determined by the ImmunoCAP system were used to both evaluate the patients' atopic condition and the molecules involved in the allergic sensitization. SDS-PAGE IgE-immunoblotting associated with mass spectrometry was carried out to study the cockroach IgE-binding sensitizing proteins. Results: Forty-five percent of all patients could be considered atopic individuals. Eighty-two percent of atopic patients were sensitized to pollen allergens. The Salsola kali (Sal k 1) and the Phleum pratense (rPhl p 1 and/or rPhl p 5) major allergens were the most common sensitizers among pollens (71% and 18%, respectively). Thirty-five percent of the atopic population was sensitized to cockroach. Four different allergens, including a previously unknown alpha-amylase, were identified in the cockroach extract. No significant associations could be demonstrated between the severity of asthma and the specific IgE levels in the atopic population. Statistical analysis identified the Sal k 1 as the main protein allergen influencing the development and expression of asthma in the studied population. Conclusions: Pollen and cockroach were the most relevant allergen sources in the asthmatic population. The Salsola kali major allergen was the main cause for sensitization in the atopic patients suffering asthma. Using the Component Resolved Diagnosis, it was possible to identify a new Blattella germanica cockroach allergen (Blattella alpha amylase 53 kDa) that could sensitize a relevant percentage of this population.
Resumo:
We have shown that proteinase-activated receptor-2 (PAR(2)) activation in the airways leads to allergic sensitization to concomitantly inhaled Ags, thus implicating PAR(2) in the pathogenesis of asthma. Many aeroallergens with proteinase activity activate PAR(2). To study the role of PAR(2) in allergic sensitization to aeroallergens, we developed a murine model of mucosal sensitization to cockroach proteins. We hypothesized that PAR(2) activation in the airways by natural allergens with serine proteinase activity plays an important role in allergic sensitization. Cockroach extract (CE) was administered to BALB/c mice intranasally on five consecutive days (sensitization phase) and a week later for four more days (challenge phase). Airway hyperresponsiveness (AHR) and allergic airway inflammation were assessed after the last challenge. To study the role of PAR(2), mice were exposed intranasally to a receptor-blocking anti-PAR(2) Ab before each administration of CE during the sensitization phase. Mucosal exposure to CE induced eosinophilic airway inflammation, AHR, and cockroach-specific IgG1. Heat-inactivated or soybean trypsin inhibitor-treated CE failed to induce these effects, indicating that proteinase activity plays an important role. The use of an anti-PAR(2) blocking Ab during the sensitization phase completely inhibited airway inflammation and also decreased AHR and the production of cockroach-specific IgG1. PAR(2) activation by CE acts as an adjuvant for allergic sensitization even in the absence of functional TLR4. We conclude that CE induces PAR(2)-dependent allergic airway sensitization in a mouse model of allergic airway inflammation. PAR(2) activation may be a general mechanism used by aeroallergens to induce allergic sensitization. The Journal of Immunology, 2011, 186: 3164-3172.
Resumo:
Os métodos volumétricos de recolha de amostras de ar constituem os métodos dominantes atualmente para a monitorização de aeroalergenos, sendo a metodologia “Hírst” a dominante para a monitorização do pólen atmosférico. Recentemente têm surgido alguns avanços metodológicos nesta área combinando tecnologias bioquímicas e imunológicas pelo que se empreendeu este estudo a fim de comparar uma tecnologia “Ciclone”, desenvolvida no âmbito de um projeto europeu do programa LIFE (LIFE05 ENV/F/000068), com o referido método padrão quanto à eficiência de captação do pólen atmosférico e à deteção de aeroalergenos polínicos. Métodos: Foram efetuadas amostragens do conteúdo polínico atmosférico dos períodos de polinização dos anos 2006 e 2007 mediante um coletor tipo “Hirst” (Burkard® Seven Day Recording Volumetric Spore Trap®) e um coletor tipo “Ciclone” (AeoluS®, Coriolis ® da Bertin Technologies), colocados lado a lado. Foram instalados sobre uma plataforma meteorológica situada no centro da cidade de Évora, 17m acima do nível do solo. As amostras foram analisadas de acordo com os protocolos estabelecidos para cada método. De forma complementar foi realizada uma correlação dos dados obtidos com os registos de inquéritos sintomatológicos efetuados por voluntários das consultas externas de Imunoalergologia do hospital do Espírito Santo em Évora. Todos aqueles que apresentaram queixas respiratórias durante 0 período primaveril efetuaram testes cutâneos em “Prick” modificado aos aeroalergenos mais frequentes na região, a fim de se determinar o respetivo Perl de sensibilidades. Resultados: Esperou-se com este estudo testar a eficácia de uma nova metodologia para deteção e análise de bioaerossóis, comparativamente com a metodologia padrão e com a sua relação sintomatologia atópica respiratória. /ABSTRACT - Nowadays volumetric methods for bioaerosols sampling constitute the main methods to monitor the aeroallergens whereas “Hirst" methodology is the most dominant method to monitor airborne pollen. Recently some methodological advances have been introduced in this area matching biochemical and immunological technologies and so a study was accomplished in order to compare a "Cyclone” technology, developed under the scope of a European project - the LFE program -, with the mentioned standard method in terms of efficiency of airborne pollen sampling and detection of aeroallergens. Methods: Air samples from the outdoor environment were collected during the pollination period, along the year 2006 and 2007 with a "Hirst"-t3pe collector (Burkard® Seven Day Recording Volumetric Spore Trap®) and a "Cyclone"-type collector (Aeolus®, Coriolis® Bertin Technologies), placed side by side. They were installed on a meteorological platform situated at the center of Évora, 17m above ground level. Samples were analyzed according to the established protocols by each method. In a complementary way a data correlation was done between the symptomatologic inquiries fiom volunteers of the Immunoallergology external consultations at the Hospital Espírito Santo, in Évora. Everyone declaring breathing complaints during the spring season had done modified skin 'Trick" tests to the most usual aeroallergens of the region Results: It is waited from this study to test the efficiency of a new methodology for detection and analysis of bioaerossols, comparatively with the standard methodology and and its relation with the atopic simptomatologic breathing
Resumo:
Daily average Alnus pollen counts (1996-2005) from Worcester (UK) and Poznań (Poland) were examined with the aim of assessing the regional importance of Alnus pollen as an aeroallergen. The average number of Alnus pollen grains recorded annually at Poznań was more than 2.5 times that of Worcester. Furthermore, daily average Alnus pollen counts exceeded the thresholds of 100, 500 and 1,000 grains/m3 more times at Poznań than Worcester. Skin prick test results (1996-2005) and allergen-specific IgE(asIgE) measurements using the CAP (Pharmacia) system (2002-2005), were supplied by the Allergic Diseases Diagnostic Centre in Poznań. The annual number of positive skin prick tests to Alnus pollen allergens was significantly related (p<0.05) to seasonal variations in the magnitude of the Alnus pollen catch recorded at Poznań (r=0.70). The symptoms of patients with positive skin prick tests to Alnus pollen allergens were: 51% pollinosis, 43% atopic dermatitis, 4% asthma, 1% chronic urticaria and 1% eczema. On a scale of 0-6, 20.5% of patients examined for serum asIgE in relation to Alnus pollen allergens had asIgE measurements in classes 5 and 6. Alnus pollen is generally considered to be mildly allergenic. However, the amount of Alnus pollen released into the atmosphere in places such as Poznań may increase its impact on the population and make it one of the more important aeroallergens present.
Resumo:
The pollen grains of Ambrosia spp. are considered to be important aeroallergens in parts of southern and central Europe. Back-trajectories have been analysed with the aim of finding the likely sources of Ambrosia pollen grains that arrived at Poznań (Poland). Temporal variations in Ambrosia pollen at Poznań from 1995–2005 were examined in order to identify Ambrosia pollen episodes suitable for further investigation using back-trajectory analysis. The trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Analysis identified two separate populations in Ambrosia pollen episodes, those that peaked in the early morning between 4 a.m. and 8 a.m., and those that peaked in the afternoon between 2 p.m. and 6 p.m.. Six Ambrosia pollen episodes between 2001 and 2005 were examined using backtrajectory analysis. The results showed that Ambrosia pollen episodes that peaked in the early morning usually arrived at Poznań from a southerly direction after passing over southern Poland, the Czech Republic, Slovakia and Hungary, whereas air masses that brought Ambrosia pollen to Poznań during the afternoon arrived from a more easterly direction and predominantly stayed within the borders of Poland. Back-trajectory analysis has shown that there is a possibility that long-range transport brings Ambrosia pollen to Poznań from southern Poland, the Czech Republic, Slovakia and Hungary. There is also a likelihood that Ambrosia is present in Poland, as shown by the arrival of pollen during the afternoon that originated primarily from within the country.
Resumo:
Background: The pollen grains of Ambrosia spp. are considered to be important aeroallergens. Previous studies have shown that the long-range transport of Ambrosia pollen to Poland is intermittent and mainly related to the passage of air masses over the Carpathian and Sudetes mountains from sources to the south, e.g. the Czech Republic, Slovakia and Hungary. In this study, Ambrosia pollen counts and back-trajectories from specific episodes in 1999 and 2002 have been analysed with the aim of identifying possible new sources of Ambrosia pollen arriving at three sites in Poland. Method: The combination of Ambrosia pollen measurements (daily average and bi-hourly concentrations) and air mass trajectory calculations were used to investigate two Ambrosia pollen episodes recorded at Rzeszow, Krakow and Poznań on the 4th and 5th September 1999 and 3rd September 2002. Ambrosia pollen counts were recorded by volumetric spore traps of the Hirst design. Trajectories were calculated using the transport model within the Lagrangian air pollution model, ACDEP (Atmospheric Chemistry and Deposition). Results: The collective results of pollen measurements and back-trajectory analysis indicate plumes of Ambrosia pollen travelling up through Poland from the southeast during the investigated episodes. In 1999, the plume was first recorded at Rzeszow in Southeastern Poland during the morning of the 4th September. Its route can be followed as it passed Krakow during the afternoon of the 4th, and later on the 4th and 5th September at Poznań. Similarly, back-trajectories calculated during the morning and afternoon from Krakow and Rzeszow on the 3rd September 2002 indicates that the air masses arrived at these sites from the East or Southeast. Conclusion: This study shows the progress of Ambrosia plumes into Poland from the southeast. Ambrosia pollen release occurs mainly during the day and so a midday peak in Ambrosia pollen concentrations may indicate a local source. However, if the plume of Ambrosia pollen tracked along its northwesterly path over Poland during investigated episodes did not originate from inside Poland, then it is likely that it came from the Ukraine. This identifies a possible new source of ragweed pollen for Poland. Trajectory analysis can only show the path along which an air mass travels, not the specific source area. Further investigation could therefore include source based transport models such as 3D Eulerian atmospheric transport models.
Resumo:
The pollen grains of ragweed are important aeroallergens that have the potential to be transported longdistances through the air. The arrival of ragweed pollen in Nordic countries from the Pannonian Plain canoccur when certain conditions are met, which this study aims to describe for the first time. Atmosphericragweed pollen concentrations were collected at 16 pollen-monitoring sites. Other factors included inthe analysis were the overall synoptic weather situation, surface wind speeds, wind direction and tem-peratures as well as examining regional scale orography and satellite observations. Hot and dry weatherin source areas on the Pannonian Plain aid the release of ragweed pollen during the flowering seasonand result in the deep Planetary Boundary Layers needed to lift the pollen over the Carpathian Moun-tains to the north. Suitable synoptic conditions are also required for the pollen bearing air masses tomove northward. These same conditions produce the jet-effect Kosava and orographic foehn winds thataid the release and dispersal of ragweed pollen and contribute towards its movement into Poland andbeyond.
Resumo:
This study aims to determine the potential origin of Olea pollen recorded in Badajoz in the Southwest of the Iberian Peninsula during 2009–2011. This was achieved using a combination of daily average and diurnal (hourly) airborne Olea pollen counts recorded at Badajoz (south-western Spain) and Évora (south-eastern Portugal), an inventory of olive groves in the studied area and air mass trajectory calculations computed using the HYSPLIT model. Examining olive pollen episodes at Badajoz that had distinctly different diurnal cycles in olive pollen in relation to the mean, allowed us to identify three different scenarios where olive pollen can be transported to the city from either distant or nearby sources during conditions with slow air mass movements. Back trajectory analysis showed that olive pollen can be transported to Badajoz from the West on prevailing winds, either directly or on slow moving air masses, and from high densities of olive groves situated to the Southeast (e.g. Andalucía). Regional scale transport of olive pollen can result in increased nighttime concentrations of this important aeroallergen. This could be particularly important in Mediterranean countries where people can be outdoors during this time due to climate and lifestyle. Such studies that examine sources and the atmospheric transport of pollen are valuable for allergy sufferers and health care professionals because the information can be incorporated into forecasts, the outputs of which are used for avoiding exposure to aeroallergens and planning medication. The results of studies of this nature can also be used for examining gene flow in this important agricultural crop.
Resumo:
Pollen grains from the genus ragweed (Ambrosia spp.) are important aeroallergens. In Europe, the largest sources of atmospheric ragweed pollen are the Rhône Valley (France), parts of Northern Italy, the Pannonian Plain and Ukraine. Episodes of Long Distance Transport (LDT) of ragweed pollen from these centres can cover large parts of Europe and are predominantly studied using receptor based models (Smith et al., (2013) and references therein). The clinical impact of allergenic ragweed pollen arriving from distant sources remains unclear (Cecchi et al. 2010). Although a recent study has found the major allergens of ragweed in air samples collected in Poznań, Poland, during episodes of long-distance transport from the Pannonian Plain (Grewling et al. 2013). The source orientated models SILAM, DEHM, COSMO-Art, METRAS and ENVIRO-HIRLAM currently report having the capability of modelling atmospheric concentrations of pollen in Europe. The performance of such source-orientated models is strongly dependent on the quality of the emissions data, which is a focus of current research (e.g. Thibaudon et al. (2014)). The output from these models are important for warning allergy sufferers in areas polluted by ragweed, but could also be used to warn the public of ragweed pollen being transported into areas where the plant is not abundant. Areas outside of the main areas of ragweed infection that contain considerable local populations must, however, also include local scale models. These models can be used to predict local concentrations, even when LDT is not present. This concept of combined LDT and local scale calculations has been shown to be work for air pollutants and is considered usable for urban scale calculations of aeroallergens once urban scale maps of aeroallergen sources have been produced.