392 resultados para aeration stoppage
Resumo:
Conselho Nacional de Desenvolvimento em Pesquisa (CNPq)
Resumo:
The cassava wastewater, generated during the cassava processing, is a pollutant and toxic waste. This study compared the efficiency of the cassava wastewater treatment in three batch aerobic systems with a ru1nning time of 24 hours, and aeration stoppage of 12h with 2,500, 6,000 and 10,000 mg COD L-1 . The systems were evaluated for COD, pH, SVI and F/M. The results showed that the reactor with aeration stoppage for 12 hours, with 2,500 mg COD L-1 , presented the best reduction in a process with considerable energy consumption saving compared to traditional continuous systems.
Resumo:
Rice straw hemicellulosic hydrolysate was used as fermentation medium for ethanol production by Pichia stipitis NRRL Y-7124. Shaking bath experiments were initially performed aiming to establish the best initial xylose concentration to be used in this bioconversion process. In the sequence, assays were carried out under different agitation (100 to 200 rpm) and aeration ((V) under bar (flask)/V(medium) ratio varying from 2.5 to 5.0) conditions, and the influence of these variables on the fermentative parameters values (ethanol yield factor, Y(P/S); cell yield factor, Y(X/S); and ethanol volumetric productivity, Q(P)) was investigated through a 2(2) full-factorial design. Initial xylose concentration of about 50 g/l was the most suitable for the development of this process, since the yeast was able to convert substrate in product with high efficiency. The factorial design assays showed a strong influence of both process variables in all the evaluated responses. The agitation and aeration increase caused a deviation in the yeast metabolism from ethanol to biomass production. The best results (Y(P/S) = 0.37 g/g and Q(P) = 0.39 g/l. h) were found when the lowest aeration (2.5 V(flask)/V(medium) ratio) and highest agitation (200 rpm) levels were employed. Under this condition, a process efficiency of 72.5% was achieved. These results demonstrated that the establishment of adequate conditions of aeration is of great relevance to improve the ethanol production from xylose by Pichia stipitis, using rice straw hemicellulosic hydrolysate as fermentation medium.
Resumo:
This study aims to provide some new understanding of the air-water flow properties in high-velocity water jets discharging past an abrupt drop. Such a setup has been little studied to date despite the relevance to bottom outlets. Downstream of the step brink, the free-jet entrains air at both upper and lower air-water interfaces, as well as along the sides. An air-water shear layer develops at the lower nappe interface. At the lower nappe, the velocity redistribution was successfully modelled and the velocity field was found to be similar to that in two-dimensional wake flow. The results highlighted further two distinct flow regions. Close to the brink (Wex < 5000), the flow was dominated by momentum transfer. Further downstream (Wex > 5000), a strong competition between air bubble diffusion and momentum exchanges took place.
Resumo:
Clinical applications of quantitative computed tomography (qCT) in patients with pulmonary opacifications are hindered by the radiation exposure and by the arduous manual image processing. We hypothesized that extrapolation from only ten thoracic CT sections will provide reliable information on the aeration of the entire lung. CTs of 72 patients with normal and 85 patients with opacified lungs were studied retrospectively. Volumes and masses of the lung and its differently aerated compartments were obtained from all CT sections. Then only the most cranial and caudal sections and a further eight evenly spaced sections between them were selected. The results from these ten sections were extrapolated to the entire lung. The agreement between both methods was assessed with Bland-Altman plots. Median (range) total lung volume and mass were 3,738 (1,311-6,768) ml and 957 (545-3,019) g, the corresponding bias (limits of agreement) were 26 (-42 to 95) ml and 8 (-21 to 38) g, respectively. The median volumes (range) of differently aerated compartments (percentage of total lung volume) were 1 (0-54)% for the nonaerated, 5 (1-44)% for the poorly aerated, 85 (28-98)% for the normally aerated, and 4 (0-48)% for the hyperaerated subvolume. The agreement between the extrapolated results and those from all CT sections was excellent. All bias values were below 1% of the total lung volume or mass, the limits of agreement never exceeded +/- 2%. The extrapolation method can reduce radiation exposure and shorten the time required for qCT analysis of lung aeration.
Resumo:
Effects of aeration on characteristics of sugarcane silage. This trial aimed at evaluating, the deleterious effects of aeration time on nutritive value and other fermentative characteristics of sugarcane silage. A completely randomized design was used with three treatments and four repetitions per treatment. Fresh chopped sugarcane was exposed to aeration for 0, 4 or 8 hours, and ensiled soon After exposure, the material was ensiled in 12 laboratory silos (plastic buckets). Silos were opened 85 after ensiling, when organic acids contents and chemical composition of silages were determined. Deviation of linearity (p < 0.05) was observed for aeration time on dry matter. A positive linear effect was observed (p < 0.05) on ADF, NDF and soluble carbohydrates content, but negative for ammoniacal nitrogen content and in vitro digestibility of dry matter. For organic acids content, deviation of linearity was observed on acetic acid, with the lowest content (1.5% of DM) observed after 8 hours of aeration, and a negative linear effect was observed for lactic and butyric acids, as well as for pH values. There were no effects on ethanol concentration, which remained very high (22% of DM), regardless of aeration time. Aerobic stability of silage worsened with the increase in aeration time.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do ambiente, perfil de engenharia sanitária
Resumo:
In vivo exposure to chronic hypoxia is considered to be a cause of myocardial dysfunction, thereby representing a deleterious condition, but repeated aeration episodes may exert some cardioprotection. We investigated the possible role of ATP-sensitive potassium channels in these mechanisms. First, rats (n = 8/group) were exposed for 14 days to either chronic hypoxia (CH; 10% O(2)) or chronic hypoxia with one episode/day of 1-hr normoxic aeration (CH+A), with normoxia (N) as the control. Second, isolated hearts were Langendorff perfused under hypoxia (10% O(2), 30 min) and reoxygenated (94% O(2), 30 min) with or without 3 microM glibenclamide (nonselective K(+)(ATP) channel-blocker) or 100 microM diazoxide (selective mitochondrial K(+)(ATP) channel-opener). Blood gasses, hemoglobin concentration, and plasma malondialdehyde were similar in CH and CH+A and in both different from normoxic (P < 0.01), body weight gain and plasma nitrate/nitrite were higher in CH+A than CH (P < 0.01), whereas apoptosis (number of TUNEL-positive nuclei) was less in CH+A than CH (P < 0.05). During in vitro hypoxia, the efficiency (ratio of ATP production/pressure x rate product) was the same in all groups and diazoxide had no measurable effects on myocardial performance, whereas glibenclamide increased end-diastolic pressure more in N and CH than in CH+A hearts (P < 0.05). During reoxgenation, efficiency was markedly less in CH with respect to N and CH+A (P < 0.0001), and ratex pressure product remained lower in CH than N and CH+A hearts (P < 0.001), but glibenclamide or diazoxide abolished this difference. Glibenclamide, but not diazoxide, decreased vascular resistance in N and CH (P < 0.005 and < 0.001) without changes in CH+A. We hypothesize that cardioprotection in chronically hypoxic hearts derive from cell depolarization by sarcolemmal K(+)(ATP) blockade or from preservation of oxidative phosphorylation efficiency (ATP turnover/myocardial performance) by mitochondrial K(+)(ATP) opening. Therefore K(+)(ATP) channels are involved in the deleterious effects of chronic hypoxia and in the cardioprotection elicited when chronic hypoxia is interrupted with short normoxic aeration episodes.
Resumo:
The hypothesis of this study was that the absence of soil tillage in long-term no-tillage (NT) systems can be detrimental to soil aeration. The objective was to assess the aeration condition of an Oxisol (Rhodic Ferrasol), very clayey texture (750 g kg-1 of clay; 200 g kg-1 of sand), after 30 years of cultivation under NT. The physical property soil air permeability (Ka) is sensitive to changes in the soil pore system. Aside from Ka, the air-filled porosity (ε a) and indices of pore continuity (K1 and N), derived from the relationship between Ka and εa, were used as indices of soil aeration. From the soil layers 0.0-0.1 and 0.1-0.2 m, 240 undisturbed samples were collected along a transect perpendicular to the crop rows, at three sampling positions: corn plant row (CR); center of the interrow (INT); and the equidistant point between CR and INT (PE). The properties Ka and εa were determined at soil matric potentials (Ψm) of -2, -4, -6, -10, -30, and -50 kPa. Soil bulk density (BD) was also determined. The results confirmed the hypothesis. In the 0.0-0.1 m layer, Ka, K1, N and Ψa were significantly greater and BD significantly lower in CR than at the other sampling positions. At a Ψm of -10 kPa, the Ka of CR was 6.9 and 8.4 times higher than in PE and INT, respectively, in the 0.0-0.1 m layer. The properties Ka, K1 and N were sensitive enough to detect changes in the pore system and their differences between the sampling positions demonstrated the importance of the spatial location for soil sampling. Tilling the crop rows provides better soil aeration under NT.
Resumo:
Two experimental studies evaluated the effect of aerobic and membrane aeration changes on sludge properties, biological nutrient removal and filtration processes in a pilot plant membrane bioreactor. The optimal operating conditions were found at an aerobic dissolved oxygen set-point (DO) of 0.5mgO2L-1 and a membrane specific aeration demand (SADm) of 1mh-1, where membrane aeration can be used for nitrification. Under these conditions, a total flow reduction of 42% was achieved (75% energy reduction) without compromising nutrient removal efficiencies, maintaining sludge characteristics and controlled filtration. Below these optimal operating conditions, the nutrient removal efficiency was reduced, increasing 20% for soluble microbial products, 14% for capillarity suction time and reducing a 15% for filterability. Below this DO set-point, fouling increased with a transmembrane pressure 75% higher. SADm below 1mh-1 doubled the values of transmembrane pressure, without recovery after achieving the initial conditions
Resumo:
This study investigated the emission of N2O during the sequential aerated (60-min) and non-aerated (30-min) stages of an intermittent aeration cycle in an activated sludge wastewater treatment plant (WWTP). N2O emission occurred during both stages; however, emission was much higher during aeration. Air stripping is the major factor controlling transfer of N2O from the sewage to the atmosphere. The N2O emissions exclusively from the aeration tank represented 0.10% of the influent total nitrogen load and the per capita emission factor was almost 3 times higher than that suggested by the IPCC for inventories of N2O emission from WWTPs.
Resumo:
The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-3S days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35-days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. (C) 2004 Society of Chemical Industry.