963 resultados para advanced manufacturing technologies
Design of improved rail-to-rail low-distortion and low-stress switches in advanced CMOS technologies
Resumo:
This paper describes the efficient design of an improved and dedicated switched-capacitor (SC) circuit capable of linearizing CMOS switches to allow SC circuits to reach low distortion levels. The described circuit (SC linearization control circuit, SLC) has the advantage over conventional clock-bootstrapping circuits of exhibiting low-stress, since large gate voltages are avoided. This paper presents exhaustive corner simulation results of a SC sample-and-hold (S/H) circuit which employs the proposed and optimized circuits, together with the experimental evaluation of a complete 10-bit ADC utilizing the referred S/H circuit. These results show that the SLC circuits can reduce distortion and increase dynamic linearity above 12 bits for wide input signal bandwidths.
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Engenharia Química e Bioquímica pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
In this article authors present main objectives and progress of the EU ERASMUS CD project: European Study Programme for Advanced Networking Technologies (ESPANT)
Resumo:
Rapid depletion of easy-to-access fossil fuel, predominantly, oil and gas resources has now necessitated increase in need to develop new oil and gas sources in ever more remote and hostile environments. This is necessary in order to explore more oil and gas resources to meet rapidly rising long-term energy demand in the world, both at present and in the nearest future. Arctic is one of these harsh environments, where enormous oil and gas resources are available, containing about 20% of the world total oil and gas, but the environmental conditions are very harsh and hostile. However, virtually all the facilities required for the exploration and development of this new energy source are constructed with metals as well as their alloys and are predominantly joined together by welding processes and technologies. Meanwhile, due to entirely different environment from the usual moderate temperate region, conventional welding technologies, common metals and their alloys cannot be applied as this Arctic environment demand metals structures with very high toughness and strength properties under extremely low temperature. This is due to the fact that metals transit from ductility to brittleness as the temperature moves toward extreme negative values. Hence, this research work investigates and presents the advanced welding technologies applicable to Arctic metal structures which can give satisfactory weldments under active Arctic service conditions. .
Resumo:
In this report, information is published concerning Russian water and wastewater treatment plants. The information is based on a questionnaire sent to 70 water and wastewater treatment plants in 2012-2013. The questionnaire was prepared by the International Advanced Water Technologies Centre (IAWTC) and Lahti Development Company (LADEC). The questions dealt with an assessment of the present state, the need for changes, renovation, investments, and how to improve the efficiency of the operation by training and investments. A significant need to renew the old pipelines, constructions, and processes was clearly evident. The aggregated answers can be utilized in Russia as internal benchmarking in order to arrange training and plant visits, which were requested in many of the answers. Sharing this open report with the respondents can aid networking and awareness of HELCOM requirements which relate to waste water treatment plants discharging their waste water directly or indirectly into the Baltic Sea. The aim of this report is to provide information for Finnish small and medium size companies (SMEs) as regards possible water related exportation to different parts of Russia.
Resumo:
Manufacturing industry has been always facing challenge to improve the production efficiency, product quality, innovation ability and struggling to adopt cost-effective manufacturing system. In recent years cloud computing is emerging as one of the major enablers for the manufacturing industry. Combining the emerged cloud computing and other advanced manufacturing technologies such as Internet of Things, service-oriented architecture (SOA), networked manufacturing (NM) and manufacturing grid (MGrid), with existing manufacturing models and enterprise information technologies, a new paradigm called cloud manufacturing is proposed by the recent literature. This study presents concepts and ideas of cloud computing and cloud manufacturing. The concept, architecture, core enabling technologies, and typical characteristics of cloud manufacturing are discussed, as well as the difference and relationship between cloud computing and cloud manufacturing. The research is based on mixed qualitative and quantitative methods, and a case study. The case is a prototype of cloud manufacturing solution, which is software platform cooperated by ATR Soft Oy and SW Company China office. This study tries to understand the practical impacts and challenges that are derived from cloud manufacturing. The main conclusion of this study is that cloud manufacturing is an approach to achieve the transformation from traditional production-oriented manufacturing to next generation service-oriented manufacturing. Many manufacturing enterprises are already using a form of cloud computing in their existing network infrastructure to increase flexibility of its supply chain, reduce resources consumption, the study finds out the shift from cloud computing to cloud manufacturing is feasible. Meanwhile, the study points out the related theory, methodology and application of cloud manufacturing system are far from maturity, it is still an open field where many new technologies need to be studied.
Resumo:
Reconstructive therapies to promote the regeneration of lost periodontal support have been investigated through both preclinical and clinical studies. Advanced regenerative technologies using new barrier-membrane techniques, cell-growth-stimulating proteins or gene-delivery applications have entered the clinical arena. Wound-healing approaches using growth factors to target the restoration of tooth-supporting bone, periodontal ligament and cementum are shown to significantly advance the field of periodontal-regenerative medicine. Topical delivery of growth factors, such as platelet-derived growth factor, fibroblast growth factor or bone morphogenetic proteins, to periodontal wounds has demonstrated promising results. Future directions in the delivery of growth factors or other signaling models involve the development of innovative scaffolding matrices, cell therapy and gene transfer, and these issues are discussed in this paper.
Resumo:
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
Resumo:
Shipping list no.: 92-82-P.
Resumo:
Purpose – Developing countries are heavily dependent on the resources and commitment of foreign providers to ensure successful adoption of advanced manufacturing technology (AMT). The purpose of this paper is to describe the important role of buyer-supplier relationships (BSRs) in the process of technology selection, acquisition and implementation. Design/methodology/approach – A survey of 147 Malaysian manufacturing firms is the main instrument used in the research investigations and data analysis is carried out by the structured equation modelling (SEM) technique. In particular, the authors examine the impact on performance of different patterns of relationship between technology buyers and suppliers. Findings – Although the majority of the firms reported improvements in their performance since the acquisition of AMT, closer investigation reveals that those demonstrating a closer relationship with their suppliers are more likely to achieve higher levels of technology and implementation performance (IP) than those that do not. Research limitations/implications – The paper only assesses the strength of BSR from the buyers' perspective and they may have limited experience of acquisition, whereas suppliers may have more experience of selling AMT. Also, the research is undertaken in Malaysia and the findings may be different in other countries, especially where the technology being acquired is not imported but sourced locally. Practical implications – The findings relating to BSR, technology acquisition and IP have important implications both for customers and supplier firms as well as for industrial policy makers in developing countries. Originality/value – The result of the research provides useful insights that are especially pertinent to an improved understanding of BSRs in the procurement of capital equipment, about which the current research literature is limited.