245 resultados para adiponectin
Resumo:
Obesity is associated with development of the cardiorenal metabolic syndrome, which is a constellation of risk factors, such as insulin resistance, inflammatory response, dyslipidemia, and high blood pressure that predispose affected individuals to well-characterized medical conditions such as diabetes, cardiovascular and kidney chronic disease. The study was designed to establish relationship between metabolic and inflammatory disorder, renal sodium retention and enhanced blood pressure in a group of obese subjects compared with age-matched, lean volunteers. The study was performed after 14 h overnight fast after and before OGTT in 13 lean (BMI 22.92 ± 2.03 kg/m(2)) and, 27 obese (BMI 36.15 ± 3.84 kg/m(2)) volunteers. Assessment of HOMA-IR and QUICKI index were calculated and circulating concentrations of TNF-α, IL-6 and C-reactive protein, measured by immunoassay. THE STUDY SHOWS THAT A HYPERINSULINEMIC (HI: 10.85 ± 4.09 μg/ml) subgroup of well-characterized metabolic syndrome bearers-obese subjects show higher glycemic and elevated blood pressure levels when compared to lean and normoinsulinemic (NI: 5.51 ± 1.18 μg/ml, P < 0.027) subjects. Here, the combination of hyperinsulinemia, higher HOMA-IR (HI: 2.19 ± 0.70 (n = 12) vs. LS: 0.83 ± 0.23 (n = 12) and NI: 0.98 ± 0.22 (n = 15), P < 0.0001) associated with lower QUICKI in HI obese when compared with LS and NI volunteers (P < 0.0001), suggests the occurrence of insulin resistance and a defect in insulin-stimulated peripheral action. Otherwise, the adiponectin measured in basal period was significantly enhanced in NI subjects when compared to HI groups (P < 0.04). The report also showed a similar insulin-mediated reduction of post-proximal urinary sodium excretion in lean (LS: 9.41 ± 0.68% vs. 6.38 ± 0.92%, P = 0.086), and normoinsulinemic (NI: 8.41 ± 0.72% vs. 5.66 ± 0.53%, P = 0.0025) and hyperinsulinemic obese subjects (HI: 8.82 ± 0.98% vs. 6.32 ± 0.67%, P = 0.0264), after oral glucose load, despite elevated insulinemic levels in hyperinsulinemic obeses. In conclusion, this study highlights the importance of adiponectin levels and dysfunctional inflammatory modulation associated with hyperinsulinemia and peripheral insulin resistance, high blood pressure, and renal dysfunction in a particular subgroup of obeses.
Resumo:
Background: Studies suggest that leucine supplementation (LS) has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET) as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD) in rats. Methods: Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10) or HFD (n = 37). After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF), LS, ET, and LS+ET (n = 7-8 rats per group). After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-alpha) were analyzed. Results: At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019). In addition, ET was more effective than LS in reducing adiposity (P = 0.019), serum insulin (P = 0.022) and TNF-alpha (P = 0.044). Conversely, LS increased serum adiponectin (P = 0.021) levels and reduced serum total cholesterol concentration (P = 0.042). Conclusions: The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.
Resumo:
No abstract.
Resumo:
Background: Obesity and obstructive sleep apnea (OSA) are both associated with the prevalence of major cardiovascular illnesses and certain common factors they are considered responsible for, such as stress oxidative increase, sympathetic tonus and resistance to insulin. Objective: The aim of the present study was to compare the effect of continuous positive airway pressure (CPAP) on oxidative stress and adiponectin levels in obese patients with and without OSA. Methods: Twenty-nine obese patients were categorized into 3 groups: group 1: 10 individuals without OSA (apnea-hypopnea index, AHI <= 5) who did not have OSA diagnosed at polysomnography; group 2: 10 patients with moderate to severe OSA (AHI >= 20) who did not use CPAP; group 3: 9 patients with moderate to severe OSA (AHI >= 20) who used CPAP. Results: Group 3 showed significant differences before and after the use of CPAP, in the variables of diminished production of superoxide, and increased nitrite and nitrate synthesis and adiponectin levels. Positive correlations were seen between the AHI and the superoxide production, between the nitrite and nitrate levels and the adiponectin levels, between superoxide production and the HOMA-IR, and between AHI and the HOMA-IR. Negative correlations were found between AHI and the nitrite and nitrate levels, between the superoxide production and that of nitric oxide, between the superoxide production and the adiponectin levels, between AHI and the adiponectin levels, and between the nitrite and nitrate levels and the HOMA-IR. Conclusions: This study demonstrates that the use of CPAP can reverse the increased superoxide production, the diminished serum nitrite, nitrate and plasma adiponectin levels, and the metabolic changes existing in obese patients with OSA. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Introduction: Body mass index (BMI) increase is an undesired effect associated with antipsychotics, and crucial for patients` global health and treatment compliance. We aimed to investigate the relation between BMI during olanzapine or halopericlol treatments and leptin, neuropeptide Y (NPY), adiponectin and lipid serum levels. Methods: In this 9-month, randomized and naturalist study, 34 male patients, 18 on olanzapine and 16 on haloperidol group were enrolled, all were under monotherapy. Patient outcome was evaluated with positive and negative syndrome scale (PANSS) at every 3-month period. In each visit, BMI, leptin, NPY, lipid, olanzapine or haloperidol levels were also monitored. Results and Discussion: Leptin levels positively correlated with BMI in olanzapine (r = 0.64, p < 0.001) and haloperidol (r = 0.73, p < 0.001) groups; only in olanzapine patients, the former also correlated with PANSS score (r = 0.54, p < 0.05). NPY levels negatively correlated with olanzapine levels (r = -0.65, p < 0.01). Adiponectin levels had not significantly varied. Conclusion: Antipsychotics probably interfere on leptin and NPY signalling ways and disturb these hormones in eating behaviour control.
Resumo:
Objective: To assess whether the -11391G > A polymorphism in the regulatory region of the adiponectin gene (ADIPOQ) is associated with birth size, postnatal growth, adiponectinemia, and cardiometabolic risk in adult life. Design: Case-control study nested within a prospective cohort of 2063 community subjects born in 1978/1979 and followed since birth to date. Methods: ADIPOQ -11391G > A genotype-phenotype associations were evaluated in 116 subjects born large for gestational age (LGA) and 392 gender-matched controls at birth (birth size), at 8-10 years (catch-down growth), and at 23-25 years of age (cardiometabolic profile). Results: The -11391A variant allele frequency was higher in LGA subjects (P=0.04). AA genotype was associated with augmented probability of being born LGA (odds ratio=4.14; 95% confidence interval: 1.16-16.7; P=0.03). This polymorphism was associated neither with body composition nor with postnatal growth pattern. At the age of 23-25 years, the -11391A variant allele was associated with higher serum adiponectin levels (GG: 10.7 +/- 6.2 versus GA: 12.2 +/- 6.5 versus AA: 14.2 +/- 6.8 mu g/ml; P < 0.01). Subjects born LGA presented higher body mass index (BMI; P=0.01), abdominal circumference (P=0.04), blood pressure (P=0.04), and homeostasis assessment model for insulin resistance (P=0.01) than adequate for gestational age. Symmetry at birth did not influence these variables. The occurrence of catch-down of weight was associated with lower BMI and abdominal circumference (P < 0.001) at 23-25 years. Conclusions: The -11391A ADIPOQ gene variant was associated with increased chance of being born LGA and with higher adiponectin levels in early adult life.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
OBJECTIVE: A large body of epidemiologic data strongly suggests an association between excess adiposity and coronary artery disease (CAD). Low adiponectin levels, a hormone secreted only from adipocytes, have been associated with an increased risk of CAD in observational studies. However, these associations cannot clarify whether this relationship is causal or due to a shared set of causal factors or even confounding. Genome-wide association studies have identified common variants that influence adiponectin levels, providing valuable tools to examine the genetic relationship between adiponectin and CAD. METHODS: Using 145 genome wide significant SNPs for adiponectin from the ADIPOGen consortium (n = 49,891), we tested whether adiponectin-decreasing alleles influenced risk of CAD in the CARDIoGRAM consortium (n = 85,274). RESULTS: In single-SNP analysis, 5 variants among 145 SNPs were associated with increased risk of CAD after correcting for multiple testing (P < 4.4 × 10(-4)). Using a multi-SNP genotypic risk score to test whether adiponectin levels and CAD have a shared genetic etiology, we found that adiponectin-decreasing alleles increased risk of CAD (P = 5.4 × 10(-7)). CONCLUSION: These findings demonstrate that adiponectin levels and CAD have a shared allelic architecture and provide rationale to undertake a Mendelian randomization studies to understand if this relationship is causal.
Resumo:
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Resumo:
Objective: Microalbuminuria (MAU) is a marker of early kidney injury and cardiovascular risk. We assessed the association of MAU with plasma adiponectin, leptin and hsCRP, as inflammatory markers, accounting for hypertension, diabetes and obesity. Design and methods: Population based, cross-sectional study in Caucasian subjects aged 35 to 75 years in Lausanne, Switzerland. MAU, measured on spot morning urine, was used either as a continuous (MAU) or dichotomized variable (MA defined as MAU >2.5 and >3.5 mg/mmol creatinine in men and women, respectively). Results: The 2955 women (age 53.3 ± 10.7, mean ± SD years) had mean body mass index (BMI) 24.9 ± 4.5 kg/m. The 2479 men (age 53.1 ± 10.8 years) had mean BMI 27.0 ± 3.9 kg/m². Median hsCRP was 1.3 and 1.3 mg/L, median adiponectin 6.2 and 10.6 mg/mL in men and women, respectively. MA prevalence was 4.9% in women and 9.8% in men. In multivariate regression analysis adjusting for potential confounders (age, sex, hypertension, diabetes, eGFR, BMI, percent fat mass, insulin and smoking), log-transformed MAU was positively associated with hsCRP (P <0.001) and adiponectin (P = 0.002), but not with leptin. The association of adiponectin with MAU was stronger in subjects with low hsCRP, and vice versa (P interaction <0.001). Conclusion: Adiponectin and hsCRP are significant positive determinants of MAU, independently of diabetes, hypertension and fat mass. A negative interaction between hsCRP and adiponectin was found for their effect on MAU. Whether hyperadiponectinemia represents an adequate protective response to vascular stress or has negative causal impact on the development of MAU should be assessed in further studies.
Resumo:
Adiponectin has a variety of metabolic effects on obesity, insulin sensitivity, and atherosclerosis. To identify genes influencing variation in plasma adiponectin levels, we performed genome-wide linkage and association scans of adiponectin in two cohorts of subjects recruited in the Genetic Epidemiology of Metabolic Syndrome Study. The genome-wide linkage scan was conducted in families of Turkish and southern European (TSE, n = 789) and Northern and Western European (NWE, N = 2,280) origin. A whole genome association (WGA) analysis (500K Affymetrix platform) was carried out in a set of unrelated NWE subjects consisting of approximately 1,000 subjects with dyslipidemia and 1,000 overweight subjects with normal lipids. Peak evidence for linkage occurred at chromosome 8p23 in NWE subjects (lod = 3.10) and at chromosome 3q28 near ADIPOQ, the adiponectin structural gene, in TSE subjects (lod = 1.70). In the WGA analysis, the single-nucleotide polymorphisms (SNPs) most strongly associated with adiponectin were rs3774261 and rs6773957 (P < 10(-7)). These two SNPs were in high linkage disequilibrium (r(2) = 0.98) and located within ADIPOQ. Interestingly, our fourth strongest region of association (P < 2 x 10(-5)) was to an SNP within CDH13, whose protein product is a newly identified receptor for high-molecular-weight species of adiponectin. Through WGA analysis, we confirmed previous studies showing SNPs within ADIPOQ to be strongly associated with variation in adiponectin levels and further observed these to have the strongest effects on adiponectin levels throughout the genome. We additionally identified a second gene (CDH13) possibly influencing variation in adiponectin levels. The impact of these SNPs on health and disease has yet to be determined.
Resumo:
Adiponectin, which plays a pivotal role in metabolic liver diseases, is reduced in concentration in patients with NASH (non-alcoholic steatohepatitis). The aim of the present study was to determine adiponectin concentrations in patients with different forms and stages of chronic liver diseases. Serum adiponectin concentrations were measured in 232 fasting patients with chronic liver disease: 64 with NAFLD (non-alcoholic fatty liver disease), 123 with other chronic liver disease (e.g. viral hepatitis, n=71; autoimmune disease, n=18; alcohol-induced liver disease, n=3; or elevated liver enzymes of unknown origin, n=31) and 45 with cirrhosis. Circulating adiponectin levels were significantly lower in patients with NAFLD in comparison with patients with other chronic liver disease (4.8+/-3.5 compared with 10.4+/-6.3 microg/ml respectively; P<0.0001). Circulating adiponectin levels were significantly higher in patients with cirrhosis in comparison with patients without cirrhosis (18.6+/-14.5 compared with 8.4+/-6.1 microg/ml respectively; P<0.0001). Adiponectin concentrations correlated negatively with body weight (P<0.001), serum triacylglycerols (triglycerides) (P<0.001) and, in women, with BMI (body mass index) (P<0.001). Adiponectin concentrations correlated positively with serum bile acids (P<0.001), serum hyaluronic acid (P<0.001) and elastography values (P<0.001). Adiponectin levels were decreased in patients with NAFLD. In conclusion, adiponectin levels correlate positively with surrogate markers of hepatic fibrosis (transient elastography, fasting serum bile acids and hyaluronate) and are significantly elevated in cases of cirrhosis.
Resumo:
Objective: Microalbuminuria (MAU) is a marker of early kidney injury and cardiovascular risk. We assessed the association of MAU with plasma adiponectin, leptin, and hsCRP as inflammatory marker, accounting for hypertension, diabetes and obesity. Design and Methods: Population based, cross-sectional study in Caucasian subjects aged 35 to 75 years in Lausanne, Switzerland. MAU, measured by quantitative immunonephelometry on spot morning urine, was used either as a continuous (MAU) or dichotomized variable (MA defined as MAU > 2.5 and >3.5 mg/mmol creatinine in men and women, respectively). Results: The 2955 women (age 53.3_10.7, mean_SD years) had mean body mass index (BMI) 24.9_4.5 kg/m. The 2479 men (age 53.1_10.8 years) hadmean BMI 27.0_3.9 kg/m2.Median hsCRP was 1.3 and 1.3 mg/L, median adiponectin 6.2 and 10.6mg/mL in men and women, respectively. MA prevalence was 4.9% in women and 9.8% in men. In multivariate regression analysis adjusting for potential confounders (age, sex, hypertension, diabetes, eGFR, BMI, percent fat mass, insulin and smoking), logtransformed MAU was positively associated with hsCRP (P<0.001) and adiponectin (P¼0.002), but not with leptin. The association of adiponectin with MAU was stronger in subjects with low hsCRP, and vice versa (P interaction<0.001). Conclusion: Adiponectin and hsCRP are significant positive determinants of MAU, independently of diabetes, hypertension and fat mass. A negative interaction between hsCRP and adiponectin was found for their effect on MAU. Whether hyperadiponectinemia represents an adequate protective response to vascular stress or has negative causal impact on the development of MAU should be assessed in further studies.
Resumo:
Adiponectin is an adipokine, present in the circulation in comparatively high concentrations and different molecular weight isoforms. For the first time, the distribution of these isoforms in serum and follicular fluid (FF) and their usefulness as biological markers for infertility investigations was studied. In vitro study. University based hospital. Fifty-four women undergoing intracytoplasmic sperm injection (ICSI). Oocytes were retrieved, fertilized in vitro using ICSI, and the resulting embryos transferred. Serum was collected immediately prior to oocyte retrieval. Adiponectin isoforms (high molecular weight (HMW), medium and low molecular weight) were determined in serum and FF. Total adiponectin and the different isoform levels were compared with leptin and ovarian steroid concentrations. Adiponectin isoforms in serum and FF. Adiponectin isoform distribution differed between serum and FF; the HMW fraction made up half of all adiponectin in the serum but only 23.3% in the FF. Total and HMW adiponectin in both serum and FF correlated negatively with the body mass index and the concentration of leptin. No correlations were observed for total adiponectin or its isoforms with estradiol, progesterone, anti-Mullerian hormone, inhibin B, or the total follicle stimulating hormone (FSH) dose administered during the ovarian stimulation phase. This study shows for the first time that adiponectin isoform distribution varies between the serum and FF compartments in gonadotropin stimulated patients. A trend towards higher HMW adiponectin serum levels in successful ICSI cycles compared to implantation failures was observed; studies with larger patient groups are required to confirm this observation.