1000 resultados para adaptive radiotherapy
Resumo:
Background: Recent clinical studies have demonstrated an emerging subgroup of head and neck cancers that are virally mediated. This disease appears to be a distinct clinical entity with patients presenting younger and with more advanced nodal disease, having lower tobacco and alcohol exposure and highly radiosensitive tumours. This means they are living longer, often with the debilitating functional side effects of treatment. The primary objective of this study was to determine how virally mediated nasopharyngeal and oropharyngeal cancers respond to radiation therapy treatment. The aim was to determine risk categories and corresponding adaptive treatment management strategies to proactively manage these patients. Method/Results: 121 patients with virally mediated, node positive nasopharyngeal or oropharyngeal cancer who received radiotherapy treatment with curative intent between 2005 and 2010 were studied. Relevant patient demographics including age, gender, diagnosis, TNM stage, pre-treatment nodal size and dose delivered was recorded. Each patient’s treatment plan was reviewed to determine if another computed tomography (re-CT) scan was performed and at what time point (dose/fraction) this occurred. The justification for this re-CT was determined using four categories: tumour and/or nodal regression, weight loss, both or other. Patients who underwent a re-CT were further investigated to determine whether a new plan was calculated. If a re-plan was performed, the dosimetric effect was quantified by comparing dose volume histograms of planning target volumes and critical structures from the actual treatment delivered and the original treatment plan. Preliminary results demonstrated that 25/121 (20.7%) patients required a re-CT and that these re-CTs were performed between fractions 20 to 25 of treatment. The justification for these re-CTs consisted of a combination of tumour and/or nodal regression and weight loss. 16/25 (13.2%) patients had a replan calculated. 9 (7.4%) of these replans were implemented clinically due to the resultant dosimetric effect calculated. The data collected from this assessment was statistically analysed to identify the major determining factors for patients to undergo a re-CT and/or replan. Specific factors identified included nodal size and timing of the required intervention (i.e. how when a plan is to be adapted). This data was used to generate specific risk profiles that will form the basis of a biologically guided adaptive treatment management strategy for virally mediated head and neck cancer. Conclusion: Preliminary data indicates that virally mediated head and neck cancers respond significantly during radiation treatment (tumour and/or nodal regression and weight loss). Implications of this response are the potential underdosing or overdosing of tumour and/or surrounding critical structures. This could lead to sub-optimal patient outcomes and compromised quality of life. Consequently, the development of adaptive treatment strategies that improve organ sparing for this patient group is important to ensure delivery of the prescribed dose to the tumour volume whilst minimizing the dose received to surrounding critical structures. This could reduce side effects and improve overall patient quality of life. The risk profiles and associated adaptive treatment approaches developed in this study will be tested prospectively in the clinical setting in Phase 2 of this investigation.
Resumo:
Introduction: Clinical investigation has revealed a subgroup of head and neck cancers that are virally mediated. The relationship between nasopharyngeal cancer and Epstein Barr Virus (EBV) has long been established and more recently, the association between oropharyngeal cancer and Human Papillomavirus (HPV) has been revealed1,2 These cancers often present with nodal involvement and generally respond well to radiation treatment, evidenced by tumour regression1. This results in the need for treatment plan adaptation or re-planning in a subset of patients. Adaptive techniques allow the target region of the radiotherapy treatment plan to be altered in accordance with treatment-induced changes to ensure that under or over dosing does not occur3. It also assists in limiting potential overdosing of surrounding critical normal tissues4. We sought to identify a high-risk group based on nodal size to be evaluated in a future prospective adaptive radiotherapy trial. Method: Between 2005-2010, 121 patients with virally mediated, node positive nasopharyngeal (EBV positive) or oropharyngeal (HPV positive) cancers, receiving curative intent radiotherapy treatment were reviewed. Patients were analysed based on maximum size of the dominant node at diagnosis with a view to grouping them in varying risk categories to determine the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into risk categories; ≤35mm (Group 1), 36-45mm (Group 2), ≥46mm (Group 3). Re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Conclusion: In this series, patients with virally mediated head and neck cancer and nodal size > 46mm appear to be a high-risk group for the need of re-planning during a course of curative radiotherapy. This finding will now be tested in a prospective adaptive radiotherapy study. ‘Real World’ Implications: This research identifies predictive factors for those patients with virally mediated head and neck cancer that will benefit most from treatment adaptation. This will assist in minimising the side effects experienced by these patients thereby improving their quality of life after treatment.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for a re-planning CT during radiotherapy (RT) in a subset of patients. We sought to identify a high-risk group based on nodal size to be evaluated in a future prospective adaptive RT trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal (EBV positive) or oropharyngeal (HPV positive) cancers, receiving curative intent RT were reviewed. Patients were analysed based on maximum size of the dominant node with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups; ≤35mm (Group 1), 36-45mm (Group 2), ≥46mm (Group 3). Re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Sample size did not allow statistical analysis to detect a significant difference or exclusion of a lack of difference between the 3 groups. Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of re-planning during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive RT study.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for a re-planning CT during radiotherapy (RT) in a subset of patients. We sought to identify a high-risk group based on nodal size to be evaluated in a future prospective adaptive RT trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal (EBV positive) or oropharyngeal (HPV positive) cancers, receiving curative intent RT were reviewed. Patients were analysed based on maximum size of the dominant node with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups; ≤35mm (Group 1), 36-45mm (Group 2), ≥46mm (Group 3). Re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Sample size did not allow statistical analysis to detect a significant difference or exclusion of a lack of difference between the 3 groups. Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of re-planning during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive RT study.
Resumo:
Purpose: Virally mediated head and neck cancers (VMHNC) often present with nodal involvement, and are generally considered radioresponsive, resulting in the need for plan adaptation during radiotherapy in a subset of patients. We sought to identify a high-risk group based on pre-treatment nodal size to be evaluated in a future prospective adaptive radiotherapy trial. Methodology: Between 2005-2010, 121 patients with virally-mediated, node positive nasopharyngeal or oropharyngeal cancers, receiving definitive radiotherapy were reviewed. Patients were analysed based on maximum size of the dominant node at diagnosis with a view to grouping them in varying risk categories for the need of re-planning. The frequency and timing of the re-planning scans were also evaluated. Results: Sixteen nasopharyngeal and 105 oropharyngeal tumours were reviewed. Twenty-five (21%) patients underwent a re-planning CT at a median of 22 (range, 0-29) fractions with 1 patient requiring re-planning prior to the commencement of treatment. Based on the analysis, patients were subsequently placed into 3 groups defined by pre-treatment nodal size; ≤ 35mm (Group 1), 36-45mm (Group 2), ≥ 46mm (Group 3). Applying these groups to the patient cohort, re-planning CT’s were performed in Group 1- 8/68 (11.8%), Group 2- 4/28 (14.3%), Group 3- 13/25 (52%). Conclusion: In this series, patients with VMHNC and nodal size > 46mm appear to be a high-risk group for the need of plan adaptation during a course of definitive radiotherapy. This finding will now be tested in a prospective adaptive radiotherapy study.
Resumo:
Purpose Virally mediated head and neck cancers (VMHNC) often present with nodal involvement and are highly radioresponsive, meaning that treatment plan adaptation during radiotherapy (RT) in a subset of patients is required. We sought to determine potential risk profiles and a corresponding adaptive treatment strategy for these patients. Methodology 121 patients with virally mediated, node positive nasopharyngeal (Epstein Barr Virus positive) or oropharyngeal (Human Papillomavirus positive) cancers, receiving curative intent RT were reviewed. The type, frequency and timing of adaptive interventions, including source-to-skin distance (SSD) corrections, re-scanning and re-planning, were evaluated. Patients were reviewed based on the maximum size of the dominant node to assess the need for plan adaptation. Results Forty-six patients (38%) required plan adaptation during treatment. The median fraction at which the adaptive intervention occurred was 26 for SSD corrections and 22 for re-planning CTs. A trend toward 3 risk profile groupings was discovered: 1) Low risk with minimal need (< 10%) for adaptive intervention (dominant pre-treatment nodal size of ≤ 35 mm), 2) Intermediate risk with possible need (< 20%) for adaptive intervention (dominant pre-treatment nodal size of 36 mm – 45 mm) and 3) High-risk with increased likelihood (> 50%) for adaptive intervention (dominant pre-treatment nodal size of ≥ 46 mm). Conclusion In this study, patients with VMHNC and a maximum dominant nodal size of > 46 mm were identified at a higher risk of requiring re-planning during a course of definitive RT. Findings will be tested in a future prospective adaptive RT study.
Resumo:
Background and purpose Adaptive radiotherapy (ART) can account for the dosimetric impact of anatomical change in head and neck cancer patients; however it can be resource intensive. Consequently, it is imperative that patients likely to require ART are identified. The purpose of this study was to find predictive factors that identify oropharyngeal squamous cell carcinoma (OPC) and nasopharyngeal carcinoma (NPC) patients more likely to need ART. Materials and methods One hundred and ten patients with OPC or NPC were analysed. Patient demographics and tumour characteristics were compared between patients who were replanned and those that were not. Factors found to be significant were included in logistic regression models. Risk profiles were developed from these models. A dosimetric analysis was performed. Results Nodal disease stage, pre-treatment largest involved node size, diagnosis and initial weight (categorised in 2 groups) were identified as significant for inclusion in the model. Two models were found to be significant (p = 0.001), correctly classifying 98.2% and 96.1% of patients respectively. Three ART risk profiles were developed. Conclusion Predictive factors identifying OPC or NPC patients more likely to require ART were reported. A risk profile approach could facilitate the effective implementation of ART into radiotherapy departments through forward planning and appropriate resource allocation.
Resumo:
Purpose: It is common for head and neck patients to be affected by time trend errors as a result of weight loss during a course of radiation treatment. The objective of this planning study was to investigate the impact of weight loss on Volumetric Modulated Arc Therapy (VMAT) as well as Intensity modulated radiation therapy (IMRT) for locally advanced head and neck cancer using automatic co-registration of the CBCT. Methods and Materials: A retrospective analysis of previously treated IMRT plans for 10 patients with locally advanced head and neck cancer patients was done. A VMAT plan was also produced for all patients. We calculated the dose–volume histograms (DVH) indices for spinal cord planning at risk volumes (PRVs), the brainstem PRVs (SC+0.5cm and BS+0.5cm, respectively) as well as mean dose to the parotid glands. Results: The results show that the mean difference in dose to the SC+0.5cm was 1.03% and 1.27% for the IMRT and VMAT plans, respectively. As for dose to the BS+0.5, the percentage difference was 0.63% for the IMRT plans and 0.61% for the VMAT plans. The analysis of the parotid gland doses shows that the percentage change in mean dose to left parotid was -8.0% whereas that of the right parotid was -6.4% for the IMRT treatment plans. In the VMAT plans, the percentages change for the left and the right parotid glands were -6.6% and -6.7% respectively. Conclusions: This study shows a clinically significant impact of weight loss on DVH indices analysed in head and neck organs at risk. It highlights the importance of adaptive radiotherapy in head and neck patients if organ at risk sparing is to be maintained.
Resumo:
Purpose: The rapid distal falloff of a proton beam allows for sparing of normal tissues distal to the target. However proton beams that aim directly towards critical structures are avoided due to concerns of range uncertainties, such as CT number conversion and anatomy variations. We propose to eliminate range uncertainty and enable prostate treatment with a single anterior beam by detecting the proton’s range at the prostate-rectal interface and adaptively adjusting the range in vivo and in real-time. Materials and Methods: A prototype device, consisting of an endorectal liquid scintillation detector and dual-inverted Lucite wedges for range compensation, was designed to test the feasibility and accuracy of the technique. Liquid scintillation filled volume was fitted with optical fiber and placed inside the rectum of an anthropomorphic pelvic phantom. Photodiode-generated current signal was generated as a function of proton beam distal depth, and the spatial resolution of this technique was calculated by relating the variance in detecting proton spills to its maximum penetration depth. The relative water-equivalent thickness of the wedges was measured in a water phantom and prospectively tested to determine the accuracy of range corrections. Treatment simulation studies were performed to test the potential dosimetric benefit in sparing the rectum. Results: The spatial resolution of the detector in phantom measurement was 0.5 mm. The precision of the range correction was 0.04 mm. The residual margin to ensure CTV coverage was 1.1 mm. The composite distal margin for 95% treatment confidence was 2.4 mm. Planning studies based on a previously estimated 2mm margin (90% treatment confidence) for 27 patients showed a rectal sparing up to 51% at 70 Gy and 57% at 40 Gy relative to IMRT and bilateral proton treatment. Conclusion: We demonstrated the feasibility of our design. Use of this technique allows for proton treatment using a single anterior beam, significantly reducing the rectal dose.
Resumo:
Introduction: The motivation for developing megavoltage (and kilovoltage) cone beam CT (MV CBCT) capabilities in the radiotherapy treatment room was primarily based on the need to improve patient set-up accuracy. There has recently been an interest in using the cone beam CT data for treatment planning. Accurate treatment planning, however, requires knowledge of the electron density of the tissues receiving radiation in order to calculate dose distributions. This is obtained from CT, utilising a conversion between CT number and electron density of various tissues. The use of MV CBCT has particular advantages compared to treatment planning with kilovoltage CT in the presence of high atomic number materials and requires the conversion of pixel values from the image sets to electron density. Therefore, a study was undertaken to characterise the pixel value to electron density relationship for the Siemens MV CBCT system, MVision, and determine the effect, if any, of differing the number of monitor units used for acquisition. If a significant difference with number of monitor units was seen then pixel value to ED conversions may be required for each of the clinical settings. The calibration of the MV CT images for electron density offers the possibility for a daily recalculation of the dose distribution and the introduction of new adaptive radiotherapy treatment strategies. Methods: A Gammex Electron Density CT Phantom was imaged with the MVCB CT system. The pixel value for each of the sixteen inserts, which ranged from 0.292 to 1.707 relative electron density to the background solid water, was determined by taking the mean value from within a region of interest centred on the insert, over 5 slices within the centre of the phantom. These results were averaged and plotted against the relative electron densities of each insert with a linear least squares fit was preformed. This procedure was performed for images acquired with 5, 8, 15 and 60 monitor units. Results: The linear relationship between MVCT pixel value and ED was demonstrated for all monitor unit settings and over a range of electron densities. The number of monitor units utilised was found to have no significant impact on this relationship. Discussion: It was found that the number of MU utilised does not significantly alter the pixel value obtained for different ED materials. However, to ensure the most accurate and reproducible MV to ED calibration, one MU setting should be chosen and used routinely. To ensure accuracy for the clinical situation this MU setting should correspond to that which is used clinically. If more than one MU setting is used clinically then an average of the CT values acquired with different numbers of MU could be utilized without loss in accuracy. Conclusions: No significant differences have been shown between the pixel value to ED conversion for the Siemens MV CT cone beam unit with change in monitor units. Thus as single conversion curve could be utilised for MV CT treatment planning. To fully utilise MV CT imaging for radiotherapy treatment planning further work will be undertaken to ensure all corrections have been made and dose calculations verified. These dose calculations may be either for treatment planning purposes or for reconstructing the delivered dose distribution from transit dosimetry measurements made using electronic portal imaging devices. This will potentially allow the cumulative dose distribution to be determined through the patient’s multi-fraction treatment and adaptive treatment strategies developed to optimize the tumour response.
Resumo:
Introduction Patients with virally mediated head and neck cancer (VMHNC) often present with advanced nodal disease that is highly radioresponsive as demonstrated by tumour and nodal regression during treatment. The resultant changes may impact on the planned dose distribution and so adversely affect the therapeutic ratio. The aim of this study was to evaluate the dosimetric effect of treatment-induced anatomical changes in VMHNC patients who had undergone a re-plan. Methods Thirteen patients with virally mediated oropharyngeal or nasopharyngeal cancer who presented for definitive radiotherapy between 2005 and 2010 and who had a re-plan generated were investigated. The dosimetric effect of anatomical changes, was quantified by comparing dose volume histograms (DVH) of primary and nodal gross target volumes and organs at risk (OAR), including spinal cord and parotid glands, from the original plan and a comparison plan. Results Eleven 3DCRT and 2 IMRT plans were evaluated. Dose to the spinal cord and brainstem increased by 4.1% and 2.6%, respectively. Mean dose to the parotid glands also increased by 3.5%. In contrast, the dose received by 98% of the primary and nodal gross tumour volumes decreased by 0.15% and 0.3%, respectively when comparing the initial treatment plan to the comparison plan. Conclusion In this study, treatment-induced anatomical changes had the greatest impact on OAR dose with negligible effect on the dose to nodal gross tumour volumes. In the era of intensity modulated radiotherapy (IMRT), accounting for treatment-induced anatomical changes is important as focus is placed on minimising the acute and long-term side effects of treatment.
Resumo:
El cáncer de próstata es el tipo de cáncer con mayor prevalencia entre los hombres del mundo occidental y, pese a tener una alta tasa de supervivencia relativa, es la segunda mayor causa de muerte por cáncer en este sector de la población. El tratamiento de elección frente al cáncer de próstata es, en la mayoría de los casos, la radioterapia externa. Las técnicas más modernas de radioterapia externa, como la radioterapia modulada en intensidad, permiten incrementar la dosis en el tumor mientras se reduce la dosis en el tejido sano. Sin embargo, la localización del volumen objetivo varía con el día de tratamiento, y se requieren movimientos muy pequeños de los órganos para sacar partes del volumen objetivo fuera de la región terapéutica, o para introducir tejidos sanos críticos dentro. Para evitar esto se han desarrollado técnicas más avanzadas, como la radioterapia guiada por imagen, que se define por un manejo más preciso de los movimientos internos mediante una adaptación de la planificación del tratamiento basada en la información anatómica obtenida de imágenes de tomografía computarizada (TC) previas a la sesión terapéutica. Además, la radioterapia adaptativa añade la información dosimétrica de las fracciones previas a la información anatómica. Uno de los fundamentos de la radioterapia adaptativa es el registro deformable de imágenes, de gran utilidad a la hora de modelar los desplazamientos y deformaciones de los órganos internos. Sin embargo, su utilización conlleva nuevos retos científico-tecnológicos en el procesamiento de imágenes, principalmente asociados a la variabilidad de los órganos, tanto en localización como en apariencia. El objetivo de esta tesis doctoral es mejorar los procesos clínicos de delineación automática de contornos y de cálculo de dosis acumulada para la planificación y monitorización de tratamientos con radioterapia adaptativa, a partir de nuevos métodos de procesamiento de imágenes de TC (1) en presencia de contrastes variables, y (2) cambios de apariencia del recto. Además, se pretende (3) proveer de herramientas para la evaluación de la calidad de los contornos obtenidos en el caso del gross tumor volumen (GTV). Las principales contribuciones de esta tesis doctoral son las siguientes: _ 1. La adaptación, implementación y evaluación de un algoritmo de registro basado en el flujo óptico de la fase de la imagen como herramienta para el cálculo de transformaciones no-rígidas en presencia de cambios de intensidad, y su aplicabilidad a tratamientos de radioterapia adaptativa en cáncer de próstata con uso de agentes de contraste radiológico. Los resultados demuestran que el algoritmo seleccionado presenta mejores resultados cualitativos en presencia de contraste radiológico en la vejiga, y no distorsiona la imagen forzando deformaciones poco realistas. 2. La definición, desarrollo y validación de un nuevo método de enmascaramiento de los contenidos del recto (MER), y la evaluación de su influencia en el procedimiento de radioterapia adaptativa en cáncer de próstata. Las segmentaciones obtenidas mediante el MER para la creación de máscaras homogéneas en las imágenes de sesión permiten mejorar sensiblemente los resultados de los algoritmos de registro en la región rectal. Así, el uso de la metodología propuesta incrementa el índice de volumen solapado entre los contornos manuales y automáticos del recto hasta un valor del 89%, cercano a los resultados obtenidos usando máscaras manuales para el registro de las dos imágenes. De esta manera se pueden corregir tanto el cálculo de los nuevos contornos como el cálculo de la dosis acumulada. 3. La definición de una metodología de evaluación de la calidad de los contornos del GTV, que permite la representación de la distribución espacial del error, adaptándola a volúmenes no-convexos como el formado por la próstata y las vesículas seminales. Dicha metodología de evaluación, basada en un nuevo algoritmo de reconstrucción tridimensional y una nueva métrica de cuantificación, presenta resultados precisos con una gran resolución espacial en un tiempo despreciable frente al tiempo de registro. Esta nueva metodología puede ser una herramienta útil para la comparación de distintos algoritmos de registro deformable orientados a la radioterapia adaptativa en cáncer de próstata. En conclusión, el trabajo realizado en esta tesis doctoral corrobora las hipótesis de investigación postuladas, y pretende servir como cimiento de futuros avances en el procesamiento de imagen médica en los tratamientos de radioterapia adaptativa en cáncer de próstata. Asimismo, se siguen abriendo nuevas líneas de aplicación futura de métodos de procesamiento de imágenes médicas con el fin de mejorar los procesos de radioterapia adaptativa en presencia de cambios de apariencia de los órganos, e incrementar la seguridad del paciente. I.2 Inglés Prostate cancer is the most prevalent cancer amongst men in the Western world and, despite having a relatively high survival rate, is the second leading cause of cancer death in this sector of the population. The treatment of choice against prostate cancer is, in most cases, external beam radiation therapy. The most modern techniques of external radiotherapy, as intensity modulated radiotherapy, allow increasing the dose to the tumor whilst reducing the dose to healthy tissue. However, the location of the target volume varies with the day of treatment, and very small movements of the organs are required to pull out parts of the target volume outside the therapeutic region, or to introduce critical healthy tissues inside. Advanced techniques, such as the image-guided radiotherapy (IGRT), have been developed to avoid this. IGRT is defined by more precise handling of internal movements by adapting treatment planning based on the anatomical information obtained from computed tomography (CT) images prior to the therapy session. Moreover, the adaptive radiotherapy adds dosimetric information of previous fractions to the anatomical information. One of the fundamentals of adaptive radiotherapy is deformable image registration, very useful when modeling the displacements and deformations of the internal organs. However, its use brings new scientific and technological challenges in image processing, mainly associated to the variability of the organs, both in location and appearance. The aim of this thesis is to improve clinical processes of automatic contour delineation and cumulative dose calculation for planning and monitoring of adaptive radiotherapy treatments, based on new methods of CT image processing (1) in the presence of varying contrasts, and (2) rectum appearance changes. It also aims (3) to provide tools for assessing the quality of contours obtained in the case of gross tumor volume (GTV). The main contributions of this PhD thesis are as follows: 1. The adaptation, implementation and evaluation of a registration algorithm based on the optical flow of the image phase as a tool for the calculation of non-rigid transformations in the presence of intensity changes, and its applicability to adaptive radiotherapy treatment in prostate cancer with use of radiological contrast agents. The results demonstrate that the selected algorithm shows better qualitative results in the presence of radiological contrast agents in the urinary bladder, and does not distort the image forcing unrealistic deformations. 2. The definition, development and validation of a new method for masking the contents of the rectum (MER, Spanish acronym), and assessing their impact on the process of adaptive radiotherapy in prostate cancer. The segmentations obtained by the MER for the creation of homogenous masks in the session CT images can improve significantly the results of registration algorithms in the rectal region. Thus, the use of the proposed methodology increases the volume overlap index between manual and automatic contours of the rectum to a value of 89%, close to the results obtained using manual masks for both images. In this way, both the calculation of new contours and the calculation of the accumulated dose can be corrected. 3. The definition of a methodology for assessing the quality of the contours of the GTV, which allows the representation of the spatial distribution of the error, adapting it to non-convex volumes such as that formed by the prostate and seminal vesicles. Said evaluation methodology, based on a new three-dimensional reconstruction algorithm and a new quantification metric, presents accurate results with high spatial resolution in a time negligible compared to the registration time. This new approach may be a useful tool to compare different deformable registration algorithms oriented to adaptive radiotherapy in prostate cancer In conclusion, this PhD thesis corroborates the postulated research hypotheses, and is intended to serve as a foundation for future advances in medical image processing in adaptive radiotherapy treatment in prostate cancer. In addition, it opens new future applications for medical image processing methods aimed at improving the adaptive radiotherapy processes in the presence of organ’s appearance changes, and increase the patient safety.
Resumo:
Aims: To develop clinical protocols for acquiring PET images, performing CT-PET registration and tumour volume definition based on the PET image data, for radiotherapy for lung cancer patients and then to test these protocols with respect to levels of accuracy and reproducibility. Method: A phantom-based quality assurance study of the processes associated with using registered CT and PET scans for tumour volume definition was conducted to: (1) investigate image acquisition and manipulation techniques for registering and contouring CT and PET images in a radiotherapy treatment planning system, and (2) determine technology-based errors in the registration and contouring processes. The outcomes of the phantom image based quality assurance study were used to determine clinical protocols. Protocols were developed for (1) acquiring patient PET image data for incorporation into the 3DCRT process, particularly for ensuring that the patient is positioned in their treatment position; (2) CT-PET image registration techniques and (3) GTV definition using the PET image data. The developed clinical protocols were tested using retrospective clinical trials to assess levels of inter-user variability which may be attributed to the use of these protocols. A Siemens Somatom Open Sensation 20 slice CT scanner and a Philips Allegro stand-alone PET scanner were used to acquire the images for this research. The Philips Pinnacle3 treatment planning system was used to perform the image registration and contouring of the CT and PET images. Results: Both the attenuation-corrected and transmission images obtained from standard whole-body PET staging clinical scanning protocols were acquired and imported into the treatment planning system for the phantom-based quality assurance study. Protocols for manipulating the PET images in the treatment planning system, particularly for quantifying uptake in volumes of interest and window levels for accurate geometric visualisation were determined. The automatic registration algorithms were found to have sub-voxel levels of accuracy, with transmission scan-based CT-PET registration more accurate than emission scan-based registration of the phantom images. Respiration induced image artifacts were not found to influence registration accuracy while inadequate pre-registration over-lap of the CT and PET images was found to result in large registration errors. A threshold value based on a percentage of the maximum uptake within a volume of interest was found to accurately contour the different features of the phantom despite the lower spatial resolution of the PET images. Appropriate selection of the threshold value is dependant on target-to-background ratios and the presence of respiratory motion. The results from the phantom-based study were used to design, implement and test clinical CT-PET fusion protocols. The patient PET image acquisition protocols enabled patients to be successfully identified and positioned in their radiotherapy treatment position during the acquisition of their whole-body PET staging scan. While automatic registration techniques were found to reduce inter-user variation compared to manual techniques, there was no significant difference in the registration outcomes for transmission or emission scan-based registration of the patient images, using the protocol. Tumour volumes contoured on registered patient CT-PET images using the tested threshold values and viewing windows determined from the phantom study, demonstrated less inter-user variation for the primary tumour volume contours than those contoured using only the patient’s planning CT scans. Conclusions: The developed clinical protocols allow a patient’s whole-body PET staging scan to be incorporated, manipulated and quantified in the treatment planning process to improve the accuracy of gross tumour volume localisation in 3D conformal radiotherapy for lung cancer. Image registration protocols which factor in potential software-based errors combined with adequate user training are recommended to increase the accuracy and reproducibility of registration outcomes. A semi-automated adaptive threshold contouring technique incorporating a PET windowing protocol, accurately defines the geometric edge of a tumour volume using PET image data from a stand alone PET scanner, including 4D target volumes.
Resumo:
A new deterministic three-dimensional neutral and charged particle transport code, MultiTrans, has been developed. In the novel approach, the adaptive tree multigrid technique is used in conjunction with simplified spherical harmonics approximation of the Boltzmann transport equation. The development of the new radiation transport code started in the framework of the Finnish boron neutron capture therapy (BNCT) project. Since the application of the MultiTrans code to BNCT dose planning problems, the testing and development of the MultiTrans code has continued in conventional radiotherapy and reactor physics applications. In this thesis, an overview of different numerical radiation transport methods is first given. Special features of the simplified spherical harmonics method and the adaptive tree multigrid technique are then reviewed. The usefulness of the new MultiTrans code has been indicated by verifying and validating the code performance for different types of neutral and charged particle transport problems, reported in separate publications.
Resumo:
PURPOSE: To investigate the dosimetric effects of adaptive planning on lung stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Forty of 66 consecutive lung SBRT patients were selected for a retrospective adaptive planning study. CBCT images acquired at each fraction were used for treatment planning. Adaptive plans were created using the same planning parameters as the original CT-based plan, with the goal to achieve comparable comformality index (CI). For each patient, 2 cumulative plans, nonadaptive plan (PNON) and adaptive plan (PADP), were generated and compared for the following organs-at-risks (OARs): cord, esophagus, chest wall, and the lungs. Dosimetric comparison was performed between PNON and PADP for all 40 patients. Correlations were evaluated between changes in dosimetric metrics induced by adaptive planning and potential impacting factors, including tumor-to-OAR distances (dT-OAR), initial internal target volume (ITV1), ITV change (ΔITV), and effective ITV diameter change (ΔdITV). RESULTS: 34 (85%) patients showed ITV decrease and 6 (15%) patients showed ITV increase throughout the course of lung SBRT. Percentage ITV change ranged from -59.6% to 13.0%, with a mean (±SD) of -21.0% (±21.4%). On average of all patients, PADP resulted in significantly (P=0 to .045) lower values for all dosimetric metrics. ΔdITV/dT-OAR was found to correlate with changes in dose to 5 cc (ΔD5cc) of esophagus (r=0.61) and dose to 30 cc (ΔD30cc) of chest wall (r=0.81). Stronger correlations between ΔdITV/dT-OAR and ΔD30cc of chest wall were discovered for peripheral (r=0.81) and central (r=0.84) tumors, respectively. CONCLUSIONS: Dosimetric effects of adaptive lung SBRT planning depend upon target volume changes and tumor-to-OAR distances. Adaptive lung SBRT can potentially reduce dose to adjacent OARs if patients present large tumor volume shrinkage during the treatment.