847 resultados para activity intensity
Resumo:
The absence of comparative validity studies has prevented researchers from reaching consensus regarding the application of intensity-related accelerometer cut points for children and adolescents. PURPOSE This study aimed to evaluate the classification accuracy of five sets of independently developed ActiGraph cut points using energy expenditure, measured by indirect calorimetry, as a criterion reference standard. METHODS A total of 206 participants between the ages of 5 and 15 yr completed 12 standardized activity trials. Trials consisted of sedentary activities (lying down, writing, computer game), lifestyle activities (sweeping, laundry, throw and catch, aerobics, basketball), and ambulatory activities (comfortable walk, brisk walk, brisk treadmill walk, running). During each trial, participants wore an ActiGraph GT1M, and VO 2 was measured breath-by-breath using the Oxycon Mobile portable metabolic system. Physical activity intensity was estimated using five independently developed cut points: Freedson/Trost (FT), Puyau (PU), Treuth (TR), Mattocks (MT), and Evenson (EV). Classification accuracy was evaluated via weighted κ statistics and area under the receiver operating characteristic curve (ROC-AUC). RESULTS Across all four intensity levels, the EV (κ = 0.68) and FT (κ = 0.66) cut points exhibited significantly better agreement than TR (κ = 0.62), MT (κ = 0.54), and PU (κ = 0.36). The EV and FT cut points exhibited significantly better classification accuracy for moderate-to vigorous-intensity physical activity (ROC-AUC = 0.90) than TR, PU, or MT cut points (ROC-AUC = 0.77-0.85). Only the EV cut points provided acceptable classification accuracy for all four levels of physical activity intensity and performed well among children of all ages. The widely applied sedentary cut point of 100 counts per minute exhibited excellent classification accuracy (ROC-AUC = 0.90). CONCLUSIONS On the basis of these findings, we recommend that researchers use the EV ActiGraph cut points to estimate time spent in sedentary, light-, moderate-, and vigorous-intensity activity in children and adolescents. Copyright © 2011 by the American College of Sports Medicine.
Resumo:
PURPOSE To develop and test decision tree (DT) models to classify physical activity (PA) intensity from accelerometer output and Gross Motor Function Classification System (GMFCS) classification level in ambulatory youth with cerebral palsy (CP); and 2) compare the classification accuracy of the new DT models to that achieved by previously published cut-points for youth with CP. METHODS Youth with CP (GMFCS Levels I - III) (N=51) completed seven activity trials with increasing PA intensity while wearing a portable metabolic system and ActiGraph GT3X accelerometers. DT models were used to identify vertical axis (VA) and vector magnitude (VM) count thresholds corresponding to sedentary (SED) (<1.5 METs), light PA (LPA) (>/=1.5 and <3 METs) and moderate-to-vigorous PA (MVPA) (>/=3 METs). Models were trained and cross-validated using the 'rpart' and 'caret' packages within R. RESULTS For the VA (VA_DT) and VM decision trees (VM_DT), a single threshold differentiated LPA from SED, while the threshold for differentiating MVPA from LPA decreased as the level of impairment increased. The average cross-validation accuracy for the VC_DT was 81.1%, 76.7%, and 82.9% for GMFCS levels I, II, and III, respectively. The corresponding cross-validation accuracy for the VM_DT was 80.5%, 75.6%, and 84.2%, respectively. Within each GMFCS level, the decision tree models achieved better PA intensity recognition than previously published cut-points. The accuracy differential was greatest among GMFCS level III participants, in whom the previously published cut-points misclassified 40% of the MVPA activity trials. CONCLUSION GMFCS-specific cut-points provide more accurate assessments of MVPA levels in youth with CP across the full spectrum of ambulatory ability.
Resumo:
We examined the impact of physical activity (PA) on surrogate markers of cardiovascular health in adolescents. 52 healthy students (28 females, mean age 14.5 ± 0.7 years) were investigated. Microvascular endothelial function was assessed by peripheral arterial tonometry to determine reactive hyperemic index (RHI). Vagal activity was measured using 24 h analysis of heart rate variability [root mean square of successive normal-to-normal intervals (rMSSD)]. Exercise testing was performed to determine peak oxygen uptake ([Formula: see text]) and maximum power output. PA was assessed by accelerometry. Linear regression models were performed and adjusted for age, sex, skinfolds, and pubertal status. The cohort was dichotomized into two equally sized activity groups (low vs. high) based on the daily time spent in moderate-to-vigorous PA (MVPA, 3,000-5,200 counts(.)min(-1), model 1) and vigorous PA (VPA, >5,200 counts(.)min(-1), model 2). MVPA was an independent predictor for rMSSD (β = 0.448, P = 0.010), and VPA was associated with maximum power output (β = 0.248, P = 0.016). In model 1, the high MVPA group exhibited a higher vagal tone (rMSSD 49.2 ± 13.6 vs. 38.1 ± 11.7 ms, P = 0.006) and a lower systolic blood pressure (107.3 ± 9.9 vs. 112.9 ± 8.1 mmHg, P = 0.046). In model 2, the high VPA group had higher maximum power output values (3.9 ± 0.5 vs. 3.4 ± 0.5 W kg(-1), P = 0.012). In both models, no significant differences were observed for RHI and [Formula: see text]. In conclusion, in healthy adolescents, PA was associated with beneficial intensity-dependent effects on vagal tone, systolic blood pressure, and exercise capacity, but not on microvascular endothelial function.
Resumo:
This work explores the automatic recognition of physical activity intensity patterns from multi-axial accelerometry and heart rate signals. Data collection was carried out in free-living conditions and in three controlled gymnasium circuits, for a total amount of 179.80 h of data divided into: sedentary situations (65.5%), light-to-moderate activity (17.6%) and vigorous exercise (16.9%). The proposed machine learning algorithms comprise the following steps: time-domain feature definition, standardization and PCA projection, unsupervised clustering (by k-means and GMM) and a HMM to account for long-term temporal trends. Performance was evaluated by 30 runs of a 10-fold cross-validation. Both k-means and GMM-based approaches yielded high overall accuracy (86.97% and 85.03%, respectively) and, given the imbalance of the dataset, meritorious F-measures (up to 77.88%) for non-sedentary cases. Classification errors tended to be concentrated around transients, what constrains their practical impact. Hence, we consider our proposal to be suitable for 24 h-based monitoring of physical activity in ambulatory scenarios and a first step towards intensity-specific energy expenditure estimators
Resumo:
Aim To examine the relevance of physical activity intensity when assessing the relationship between activity and psychological health in 9–10-year-old children. Methods Activity was assessed by accelerometry in 57 boys (n = 23) and girls (n = 34). Total activity and time spent in very light (≤1.9 METs) through to vigorous activity (≥6 METs) were recorded. Psychological health inventories to assess anxiety, depression and aspects of self-worth were completed. Results Time accumulated in very light activity had positive correlations with anxiety and depression (r > 0.30, p < 0.05) and negative correlations with aspects of physical self-worth (r > −0.29, p < 0.05). Time accumulated in vigorous activity had negative correlations with anxiety and behavioural conduct (r > −0.30, p < 0.05) and positive correlation with aspects of physical self-worth (r > 0.28, p < 0.05). Children spending over 4 h in very light intensity activity had more negative psychological profiles than children spending under 4 h at this intensity. Conclusion Aspects of psychological health were negatively correlated with very light intensity activity and positively correlated with vigorous intensity activity. Further research should investigate whether reducing time spent in very light intensity activity and increasing time spent in vigorous intensity activity improves psychological health in children.
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
Purpose To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
Background The purposes of this study were 1) to establish accelerometer count cutoffs to categorize activity intensity of 3 to 5-y old-children and 2) to evaluate the accelerometer as a measure of children’s physical activity in preschool settings. Methods While wearing an ActiGraph accelerometer, 16 preschool children performed five, 3-min structured activities. Receiver Operating Characteristic (ROC) curve analyses identified count cutoffs for four physical activity intensities. In 9 preschools, 281 children wore an ActiGraph during observations performed by three trained observers (interobserver reli-ability = 0.91 to 0.98). Results Separate count cutoffs for 3, 4, and 5-y olds were established. Sensitivity and specificity for the count cutoffs ranged from 86.7% to 100.0% and 66.7% to 100.0%, respectively. ActiGraph counts/15 s were different among all activities (P < 0.05) except the two sitting activities. Correlations between observed and ActiGraph intensity categorizations at the preschools ranged from 0.46 to 0.70 (P < 0.001). Conclusions The ActiGraph count cutoffs established and validated in this study can be used to objectively categorize the time that preschool-age children spend in different physical activity intensity levels.
Resumo:
The objective of the research was to determine the optimal location and method of attachment for accelerometer-based motion sensors, and to validate their ability to differentiate rest and increases in speed in healthy dogs moving on a treadmill. Two accelerometers were placed on a harness between the scapulae of dogs with one in a pouch and one directly attached to the harness. Two additional accelerometers were placed (pouched and not pouched) ventrally on the dog's collar. Data were recorded in 1. s epochs with dogs moving in stages lasting 3. min each on a treadmill: (1) at rest, lateral recumbency, (2) treadmill at 0% slope, 3. km/h, (3) treadmill at 0% slope, 5. km/h, (4) treadmill at 0% slope, 7. km/h, (5) treadmill at 5% slope, 5. km/h, and; (6) treadmill at 5% slope, 7. km/h. Only the harness with the accelerometer in a pouch along the dorsal midline yielded statistically significant increases (P< 0.05) in vector magnitude as walking speed of the dogs increased (5-7. km/h) while on the treadmill. Statistically significant increases in vector magnitude were detected in the dogs as the walking speed increased from 5 to 7. km/h, however, changes in vector magnitude were not detected when activity intensity was increased as a result of walking up a 5% grade. Accelerometers are a valid and objective tool able to discriminate between and monitor different levels of activity in dogs in terms of speed of movement but not in energy expenditure that occurs with movement up hill.
Resumo:
This study was a secondary analysis of data drawn from the Youth Leisure Study. The purpose of the study was to: a) explore the relationships among physical activity, leisure boredom, and various substance use variables; b) determine if leisure boredom moderated the relationship among physical activity and substance use variables; and c) create a foundation of knowledge with which to educate adolescents and educators of the importance of adopting and maintaining a healthy lifestyle early in life (i.e., free from unhealthy behaviours such as substance use and physical inactivity). Studies examining relationships among physical activity and substance are limited and, in the past, have yielded inconsistent results. The interaction of leisure boredom with physical activity intensity variables, including both team and individual pursuits were tested using moderated hierarchical regression procedures. Six measures of physical activity were used as independent variables, including, frequency of high, medium, and low intensity individual and team physical activities. Various types of substance use, including, tobacco, marijuana, and alcohol use, binge drinking, and drunkenness were used as dependent variables. The results for this study indicated that frequency of physical activity intensity was a consistent, positive predictor of alcohol use and binge drinking, but not tobacco use, marijuana use, or drunkenness. Leisure boredom was found to be a highly significant predictor of tobacco use, however, it was not a moderator of relationships among physical activity intensity and substance use variables. The implications for the study findings, are discussed further, and suggestions for future research are presented.
Resumo:
Affiliation: Margaret Cargo : Département de médecine sociale et préventive, Faculté de médecine, Université de Montréal
Resumo:
Activity recognition is an active research field nowadays, as it enables the development of highly adaptive applications, e.g. in the field of personal health. In this paper, a light high-level fusion algorithm to detect the activity that an individual is performing is presented. The algorithm relies on data gathered from accelerometers placed on different parts of the body, and on biometric sensors. Inertial sensors allow detecting activity by analyzing signal features such as amplitude or peaks. In addition, there is a relationship between the activity intensity and biometric response, which can be considered together with acceleration data to improve the accuracy of activity detection. The proposed algorithm is designed to work with minimum computational cost, being ready to run in a mobile device as part of a context-aware application. In order to enable different user scenarios, the algorithm offers best-effort activity estimation: its quality of estimation depends on the position and number of the available inertial sensors, and also on the presence of biometric information.
Resumo:
Purpose: To evaluate the validity of a uniaxial accelerometer (MTI Actigraph) for measuring physical activity in people with acquired brain injury (ABI) using portable indirect calorimetry (Cosmed K4b(2)) as a criterion measure. Methods: Fourteen people with ABI and related gait pattern impairment (age 32 +/- 8 yr) wore an MTI Actigraph that measured activity (counts(.)min-(1)) and a Cosmed K4b(2) that measured oxygen consumption (mL(.)kg(-1.)min(-1)) during four activities: quiet sitting (QS) and comfortable paced (CP), brisk paced (BP), and fast paced (FP) walking. MET levels were predicted from Actigraph counts using a published equation and compared with Cosmed measures. Predicted METs for each of the 56 activity bouts (14 participants X 4 bouts) were classified (light, moderate, vigorous, or very vigorous intensity) and compared with Cosmed-based classifications. Results: Repeated-measures ANOVA indicated that walking condition intensities were significantly different (P < 0.05) and the Actigraph detected the differences. Overall correlation between measured and predicted METs was positive, moderate, and significant (r = 0.74). Mean predicted METs were not significantly different from measured for CP and BP, but for FP walking, predicted METs were significantly less than measured (P < 0.05). The Actigraph correctly classified intensity for 76.8% of all activity bouts and 91.5% of light- and moderate-intensity bouts. Conclusions: Actigraph counts provide a valid index of activity across the intensities investigated in this study. For light to moderate activity, Actigraph-based estimates of METs are acceptable for group-level analysis and are a valid means of classifying activity intensity. The Actigraph significantly underestimated higher intensity activity, although, in practice, this limitation will have minimal impact on activity measurement of most community-dwelling people with ABI.
Resumo:
Background Physical activity in children with intellectual disabilities is a neglected area of study, which is most apparent in relation to physical activity measurement research. Although objective measures, specifically accelerometers, are widely used in research involving children with intellectual disabilities, existing research is based on measurement methods and data interpretation techniques generalised from typically developing children. However, due to physiological and biomechanical differences between these populations, questions have been raised in the existing literature on the validity of generalising data interpretation techniques from typically developing children to children with intellectual disabilities. Therefore, there is a need to conduct population-specific measurement research for children with intellectual disabilities and develop valid methods to interpret accelerometer data, which will increase our understanding of physical activity in this population. Methods Study 1: A systematic review was initially conducted to increase the knowledge base on how accelerometers were used within existing physical activity research involving children with intellectual disabilities and to identify important areas for future research. A systematic search strategy was used to identify relevant articles which used accelerometry-based monitors to quantify activity levels in ambulatory children with intellectual disabilities. Based on best practice guidelines, a novel form was developed to extract data based on 17 research components of accelerometer use. Accelerometer use in relation to best practice guidelines was calculated using percentage scores on a study-by-study and component-by-component basis. Study 2: To investigate the effect of data interpretation methods on the estimation of physical activity intensity in children with intellectual disabilities, a secondary data analysis was conducted. Nine existing sets of child-specific ActiGraph intensity cut points were applied to accelerometer data collected from 10 children with intellectual disabilities during an activity session. Four one-way repeated measures ANOVAs were used to examine differences in estimated time spent in sedentary, moderate, vigorous, and moderate to vigorous intensity activity. Post-hoc pairwise comparisons with Bonferroni adjustments were additionally used to identify where significant differences occurred. Study 3: The feasibility on a laboratory-based calibration protocol developed for typically developing children was investigated in children with intellectual disabilities. Specifically, the feasibility of activities, measurements, and recruitment was investigated. Five children with intellectual disabilities and five typically developing children participated in 14 treadmill-based and free-living activities. In addition, resting energy expenditure was measured and a treadmill-based graded exercise test was used to assess cardiorespiratory fitness. Breath-by-breath respiratory gas exchange and accelerometry were continually measured during all activities. Feasibility was assessed using observations, activity completion rates, and respiratory data. Study 4: Thirty-six children with intellectual disabilities participated in a semi-structured school-based physical activity session to calibrate accelerometry for the estimation of physical activity intensity. Participants wore a hip-mounted ActiGraph wGT3X+ accelerometer, with direct observation (SOFIT) used as the criterion measure. Receiver operating characteristic curve analyses were conducted to determine the optimal accelerometer cut points for sedentary, moderate, and vigorous intensity physical activity. Study 5: To cross-validate the calibrated cut points and compare classification accuracy with existing cut points developed in typically developing children, a sub-sample of 14 children with intellectual disabilities who participated in the school-based sessions, as described in Study 4, were included in this study. To examine the validity, classification agreement was investigated between the criterion measure of SOFIT and each set of cut points using sensitivity, specificity, total agreement, and Cohen’s kappa scores. Results Study 1: Ten full text articles were included in this review. The percentage of review criteria met ranged from 12%−47%. Various methods of accelerometer use were reported, with most use decisions not based on population-specific research. A lack of measurement research, specifically the calibration/validation of accelerometers for children with intellectual disabilities, is limiting the ability of researchers to make appropriate and valid accelerometer use decisions. Study 2: The choice of cut points had significant and clinically meaningful effects on the estimation of physical activity intensity and sedentary behaviour. For the 71-minute session, estimations for time spent in each intensity between cut points ranged from: sedentary = 9.50 (± 4.97) to 31.90 (± 6.77) minutes; moderate = 8.10 (± 4.07) to 40.40 (± 5.74) minutes; vigorous = 0.00 (± .00) to 17.40 (± 6.54) minutes; and moderate to vigorous = 8.80 (± 4.64) to 46.50 (± 6.02) minutes. Study 3: All typically developing participants and one participant with intellectual disabilities completed the protocol. No participant met the maximal criteria for the graded exercise test or attained a steady state during the resting measurements. Limitations were identified with the usability of respiratory gas exchange equipment and the validity of measurements. The school-based recruitment strategy was not effective, with a participation rate of 6%. Therefore, a laboratory-based calibration protocol was not feasible for children with intellectual disabilities. Study 4: The optimal vertical axis cut points (cpm) were ≤ 507 (sedentary), 1008−2300 (moderate), and ≥ 2301 (vigorous). Sensitivity scores ranged from 81−88%, specificity 81−85%, and AUC .87−.94. The optimal vector magnitude cut points (cpm) were ≤ 1863 (sedentary), ≥ 2610 (moderate) and ≥ 4215 (vigorous). Sensitivity scores ranged from 80−86%, specificity 77−82%, and AUC .86−.92. Therefore, the vertical axis cut points provide a higher level of accuracy in comparison to the vector magnitude cut points. Study 5: Substantial to excellent classification agreement was found for the calibrated cut points. The calibrated sedentary cut point (ĸ =.66) provided comparable classification agreement with existing cut points (ĸ =.55−.67). However, the existing moderate and vigorous cut points demonstrated low sensitivity (0.33−33.33% and 1.33−53.00%, respectively) and disproportionately high specificity (75.44−.98.12% and 94.61−100.00%, respectively), indicating that cut points developed in typically developing children are too high to accurately classify physical activity intensity in children with intellectual disabilities. Conclusions The studies reported in this thesis are the first to calibrate and validate accelerometry for the estimation of physical activity intensity in children with intellectual disabilities. In comparison with typically developing children, children with intellectual disabilities require lower cut points for the classification of moderate and vigorous intensity activity. Therefore, generalising existing cut points to children with intellectual disabilities will underestimate physical activity and introduce systematic measurement error, which could be a contributing factor to the low levels of physical activity reported for children with intellectual disabilities in previous research.