1000 resultados para acrosomal system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to study the morphological changes that occur in cells of the testes of isogenic black mouse C57BL/6/Uni into three periods during spermatogenetic used 15 mice divided into 3 groups of 5 animals with 40,50 and 60 days of age. The mice were sacrificed and weighed. Testicles were weighed and measured, and histologically processed and stained with HE, PAS and Masson Massom-H and evaluated under light microscopy. It was observed that group I with 40 days of age in the seminifcrous tubules had a lumen with sparse small amount of interstitial tubular cells. In the seminiferous epithelium type A spermatogonia, intermediate and B were identified, which occupied the compartment adbasal and intermingled with these cells in spermatocytes I in Pachytene and leptotene was observed, whereas in the adluminal compartment Golgi phase spermatids we observed the presence of acrosomal granule. In group II, the cells of the seminiferous epithelium were developed and it was observed in round spermatids cephalic hood phase plus many elongated spermatids in acrosome phase and Sertoli cells. In Group III, 60 days old, it was found that seminiferous epithelium which was of the tubules had elongated spermatids in acrosome phase and maturation, with elongated nuclei and acrosomal system typical of spermiation in the presence of sperm and residual bodies near the tubular lumen. Therefore morphological evolution of germ cell testicular spermatids can be checked and recognized in its four phases: Golgi, cap, acrosome and maturation over the age of the animal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spermatogenesis is a complex and very well organized process lasting from 30 to 75 days in mammals. The spermatogenic process has been described mainly in laboratory mammals, such as the rat, while correspondent studies in wild animals are scarce. The gerbil (Meriones unguiculatus) is a small rodent native of the arid regions of Mongolia and China. Few reports are available on reproduction in the male Mongolian gerbil. The present study provides the first description of the ultrastructural alterations in spermatid cytoplasm and nucleus, with particular reference to acrosome formation in gerbils. The testes were processed by conventional transmission electron microscopy technique. Based on the development of the acrosomal system and changes in nuclear morphology, the transformation of spermatids in spermatozoon was divided into 15 steps. There were four phases in the spermiogenesis process in the gerbil: Golgi, cap, acrosomal and maturation phases. This provides the foundation for a variety of future studies of the spermiogenesis of this animal. (C) 2000 Harcourt Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The blood-borne renin-angiotensin system (RAS) is known best for its role in the maintenance of blood pressure and electrolyte and fluid homeostasis. However, numerous tissues show intrinsic angiotensin-generating systems that cater for specific local needs through actions that add to, or differ from, the circulating RAS. The male reproductive system has several sites of intrinsic RAS activity. Recent focus on the epididymis, by our laboratories and by others, has contributed important details about the local RAS in this tissue. The RAS components have been localized morphologically and topographically; they have been shown to be responsive to androgens and to hypoxia; and angiotensin has been shown to influence tubular, and consequently, fluid secretion. Components of the RAS have also been found in the testis, vas deferens, prostate and semen. Angiotensin II receptors, type 1 and, to a lesser extent, type 2 are widespread, and angiotensin IV receptors have been localized in the prostate. The roles of the RAS in local processes at these sites are still uncertain and have yet to be fully elucidated, although there is evidence for involvement in tubular contractility, spermatogenesis, sperm maturation, capacitation, acrosomal exocytosis and fertilization. Notwithstanding this evidence for the involvement of the RAS in various important aspects of male reproduction, there has so far been a lack of clinical evidence, demonstrable by changes in fertility, for a crucial role of the RAS in male reproduction. However, it is clear that there are several potential targets for manipulating the activity of the male reproductive system by interfering with the locally generated angiotensin systems.

Relevância:

20.00% 20.00%

Publicador: