852 resultados para acoustic tracking
Resumo:
Recordings from the PerenniAL Acoustic Observatory in the Antarctic ocean (PALAOA) show seasonal acoustic presence of 4 Antarctic ice-breeding seal species (Ross seal, Ommatophoca rossii, Weddell seal, Leptonychotes weddellii, crabeater, Lobodon carcinophaga, and leopard seal, Hydrurga leptonyx). Apart from Weddell seals, inhabiting the fast-ice in Atka Bay, the other three (pack-ice) species however have to date never (Ross and leopard seal) or only very rarely (crabeater seals) been sighted in the Atka Bay region. The aim of the PASATA project is twofold: the large passive acoustic hydrophone array (hereafter referred to as large array) aims to localize calling pack-ice pinniped species to obtain information on their location and hence the ice habitat they occupy. This large array consists of four autonomous passive acoustic recorders with a hydrophone sensor deployed through a drilled hole in the sea ice. The PASATA recordings are time-stamped and can therefore be coupled to the PALAOA recordings so that the hydrophone array spans the bay almost entirely from east to west. The second, smaller hydrophone array (hereafter referred to as small array), also consists of four autonomous passive acoustic recorders with hydrophone sensors deployed through drilled holes in the sea ice. The smaller array was deployed within a Weddell seal breeding colony, located further south in the bay, just off the ice shelf. Male Weddell seals are thought to defend underwater territories around or near tide cracks and breathing holes used by females. Vocal activity increases strongly during the breeding season and vocalizations are thought to be used underwater by males for the purpose of territorial defense and advertisement. With the smaller hydrophone array we aim to investigate underwater behaviour of vocalizing male and female Weddell seals to provide further information on underwater movement patterns in relation to the location of tide cracks and breathing holes. As a pilot project, one on-ice and three underwater camera systems have been deployed near breathing holes to obtain additional visual information on Weddell seal behavioural activity. Upon each visit in the breeding colony, a census of colony composition on the ice (number of animals, sex, presence of dependent pups, presence and severity of injuries-indicative of competition intensity) as well as GPS readings of breathing holes and positions of hauled out Weddell seals are taken.
Resumo:
Los resultados del rastreo acústico en el crucero BIC Olaya 0305-06, de Huarmey a Puerto Pizarro, mostraron a la anchoveta adulta en altas concentraciones de Punta Falsa a Salaverry entre 5 y 50 mn, sus larvas y juveniles se localizaron de Salaverry a Punta Guañape, de 3 a 55 m de profundidad. La múnida se distribuyó de Huarmey a Pimentel entre 5 a 55 mn. La vinciguerria se ubicó de Huarmey a Caleta La Cruz de 10 a 80 mn. La pota tuvo una distribución dispersa de Costa Baja de Arena a Caleta La Cruz de 5 a 45 mn. La distribución geográfica de la merluza se presentó dispersa entre las isóbatas de 20 a 300 brazas, registrándose mayormente frente a Punta Guañape (25 mn), Malabrigo (58 mn) y Punta Chérrepe (40 mn). La red de arrastre pelágica tuvo un buen comportamiento frente a los cardúmenes detectados con niveles de significancia altos que se obtuvieron con la relación de sus parámetros.
Resumo:
Four experiments investigated the attentional modulation of acoustic blinks during continuous spatial tracking tasks. Experiment 1 found blink magnitude inhibition in a visual tracking task. Experiment 2 replicated this finding and also found blink latency slowing. Experiment 3 varied the difficulty of the task and found larger blink inhibition in the easy condition. Blink latency slowing did not differ and was significant at both difficulty levels. Experiment 4 employed less difficult visual and acoustic tracking tasks at two levels of task load. Blink magnitude inhibition during the visual and facilitation during the acoustic task was significant during high load in both modality groups. Blink latency was slowed in all visual task conditions and shortened in the difficult acoustic task. These results indicate that attentional blink modulation in a continuous spatial tracking task is modality specific.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Top predators can have large effects on community and population dynamics but we still know relatively little about their roles in ecosystems and which biotic and abiotic factors potentially affect their behavioral patterns. Understanding the roles played by top predators is a pressing issue because many top predator populations around the world are declining rapidly yet we do not fully understand what the consequences of their potential extirpation could be for ecosystem structure and function. In addition, individual behavioral specialization is commonplace across many taxa, but studies of its prevalence, causes, and consequences in top predator populations are lacking. In this dissertation I investigated the movement, feeding patterns, and drivers and implications of individual specialization in an American alligator (Alligator mississippiensis) population inhabiting a dynamic subtropical estuary. I found that alligator movement and feeding behaviors in this population were largely regulated by a combination of biotic and abiotic factors that varied seasonally. I also found that the population consisted of individuals that displayed an extremely wide range of movement and feeding behaviors, indicating that individual specialization is potentially an important determinant of the varied roles of alligators in ecosystems. Ultimately, I found that assuming top predator populations consist of individuals that all behave in similar ways in terms of their feeding, movements, and potential roles in ecosystems is likely incorrect. As climate change and ecosystem restoration and conservation activities continue to affect top predator populations worldwide, individuals will likely respond in different and possibly unexpected ways.
Resumo:
An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In a “busy” auditory environment listeners can selectively attend to one of several simultaneous messages by tracking one listener's voice characteristics. Here we ask how well other cues compete for attention with such characteristics, using variations in the spatial position of sound sources in a (virtual) seminar room. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played with a simultaneous “distracter” context that had a different wording. Talker difference was in competition with a position difference, so that the target‐word chosen indicates which cue‐type the listener was tracking. The main findings are that room‐acoustic factors provide some tracking cues, whose salience increases with distance separation. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. The room‐acoustic factors might therefore be the spectral‐ and temporal‐envelope effects of reverberation on the timbre of speech. By contrast, the salience of cues associated with differences in sounds' bearings tends to decrease with distance, and these cues are more effective in dichotic conditions. In other conditions, where a distance and a bearing difference cooperate, they can completely override a talker difference at various distances.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
Listeners can attend to one of several simultaneous messages by tracking one speaker’s voice characteristics. Using differences in the location of sounds in a room, we ask how well cues arising from spatial position compete with these characteristics. Listeners decided which of two simultaneous target words belonged in an attended “context” phrase when it was played simultaneously with a different “distracter” context. Talker difference was in competition with position difference, so the response indicates which cue‐type the listener was tracking. Spatial position was found to override talker difference in dichotic conditions when the talkers are similar (male). The salience of cues associated with differences in sounds, bearings decreased with distance between listener and sources. These cues are more effective binaurally. However, there appear to be other cues that increase in salience with distance between sounds. This increase is more prominent in diotic conditions, indicating that these cues are largely monaural. Distances between spectra calculated using a gammatone filterbank (with ERB‐spaced CFs) of the room’s impulse responses at different locations were computed, and comparison with listeners’ responses suggested some slight monaural loudness cues, but also monaural “timbre” cues arising from the temporal‐ and spectral‐envelope differences in the speech from different locations.
Resumo:
In recent years, acoustic perturbation measurement has gained clinical and research popularity due to the ease of availability of commercial acoustic analysing software packages in the market. However, because the measurement itself depends critically on the accuracy of frequency tracking from the voice signal, researchers argue that perturbation measures are not suitable for analysing dysphonic voice samples, which are aperiodic in nature. This study compares the fundamental frequency, relative amplitude perturbation, shimmer percent and noise-to-harmonic ratio between a group of dysphonic and non-dysphonic subjects. One hundred and twelve dysphonic subjects ( 93 females and 19 males) and 41 non-dysphonic subjects ( 35 females and 6 males) participated in the study. All the 153 voice samples were categorized into type I ( periodic or nearly periodic), type II ( signals with subharmonic frequencies that approach the fundamental frequency) and type III ( aperiodic) signals. Only the type I ( periodic and nearly periodic) voice signals were acoustically analysed for perturbation measures. Results revealed that the dysphonic female group presented significantly lower fundamental frequency, significantly higher relative amplitude perturbation and shimmer percent values than the non-dysphonic female group. However, none of these three perturbation measures were able to differentiate between male dysphonic and male non-dysphonic subjects. The noise-to-harmonic ratio failed to differentiate between the dysphonic and non-dysphonic voices for both gender groups. These results question the sensitivity of acoustic perturbation measures in detecting dysphonia and suggest that contemporary acoustic perturbation measures are not suitable for analysing dysphonic voice signals, which are even nearly periodic. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
Structural Health Monitoring (SHM) ensures the structural health and safety of critical structures covering a wide range of application areas. This thesis presents novel, low-cost and good-performance fibre Bragg grating (FBG) based systems for detection of Acoustic Emission (AE) in aircraft structures, which is a part of SHM. Importantly a key aim, during the design of these systems, was to produce systems that were sufficiently small to install in an aircraft for lifetime monitoring. Two important techniques for monitoring high frequency AE that were developed as a part of this research were, Quadrature recombination technique and Active tracking technique. Active tracking technique was used extensively and was further developed to overcome the limitations that were observed while testing it at several test facilities and with different optical fibre sensors. This system was able to eliminate any low frequency spectrum shift due to environmental perturbation and keeps the sensor always working at optimum operation point. This is highly desirable in harsh industrial and operationally active environments. Experimental work carried out in the laboratory has proved that such systems can be used for high frequency detection and have capability to detect up to 600 kHz. However, the range of frequency depends upon the requirement and design of the interrogation system as the system can be altered accordingly for different applications. Several optical fibre configurations for wavelength detection were designed during the course of this work along with industrial partners. Fibre Bragg grating Fabry-Perot (FBG-FP) sensors have shown higher sensitivity and usability than the uniform FBGs to be used with such system. This was shown experimentally. The author is certain that further research will lead to development of a commercially marketable product and the use of active tracking systems can be extended in areas of healthcare, civil infrastructure monitoring etc. where it can be deployed. Finally, the AE detection system has been developed to aerospace requirements and was tested at NDT & Testing Technology test facility based at Airbus, Filton, UK on A350 testing panels.
Resumo:
My thesis examines fine-scale habitat use and movement patterns of age 1 Greenland cod (Gadus macrocephalus ogac) tracked using acoustic telemetry. Recent advances in tracking technologies such as GPS and acoustic telemetry have led to increasingly large and detailed datasets that present new opportunities for researchers to address fine-scale ecological questions regarding animal movement and spatial distribution. There is a growing demand for home range models that will not only work with massive quantities of autocorrelated data, but that can also exploit the added detail inherent in these high-resolution datasets. Most published home range studies use radio-telemetry or satellite data from terrestrial mammals or avian species, and most studies that evaluate the relative performance of home range models use simulated data. In Chapter 2, I used actual field-collected data from age-1 Greenland cod tracked with acoustic telemetry to evaluate the accuracy and precision of six home range models: minimum convex polygons, kernel densities with plug-in bandwidth selection and the reference bandwidth, adaptive local convex hulls, Brownian bridges, and dynamic Brownian bridges. I then applied the most appropriate model to two years (2010-2012) of tracking data collected from 82 tagged Greenland cod tracked in Newman Sound, Newfoundland, Canada, to determine diel and seasonal differences in habitat use and movement patterns (Chapter 3). Little is known of juvenile cod ecology, so resolving these relationships will provide valuable insight into activity patterns, habitat use, and predator-prey dynamics, while filling a knowledge gap regarding the use of space by age 1 Greenland cod in a coastal nursery habitat. By doing so, my thesis demonstrates an appropriate technique for modelling the spatial use of fish from acoustic telemetry data that can be applied to high-resolution, high-frequency tracking datasets collected from mobile organisms in any environment.
Resumo:
Dissertação de Mestrado, Biologia Marinha, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016