994 resultados para acoustic noise


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage source inverters (VSIs) supply nonsinusoidal voltages to induction motor drives, leading to line current distortion and torque pulsation. Conventional space vector pulsewidth modulation (PWM) techniques are widely used in VSIs on the account of good waveform quality and high dc bus utilization. In a conventional space vector PWM technique, the switching sequence begins with one zero state and ends with the other zero state in a subcycle. Some novel switching sequences have been proposed, which employ only one zero state but apply one of the two active states twice in a subcycle. One pair of such special switching sequences has recently been shown to reduce the pulsating torque considerably. In this paper, the conventional and special switching sequences are compared experimentally in terms of acoustic noise. In the low-and medium-speed ranges, the special switching sequence is seen to reduce the amplitude of the tonal component of noise at the switching frequency considerably and is also found to result in spread spectrum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Workplace noise has become one of the major issues in industry not only because of workers’ health but also due to safety. Electric motors, particularly, inverter fed induction motors emit objectionably high levels of noise. This has led to the emergence of a research area, concerned with measurement and mitigation of the acoustic noise. This paper presents a lowcost option for measurement and spectral analysis of acoustic noise emitted by electric motors. The system consists of an electret microphone, amplifier and filter. It makes use of the windows sound card and associated software for data acquisition and analysis. The measurement system is calibrated using a professional sound level meter. Acoustic noise measurements are made on an induction motor drive using the proposed system as per relevant international standards. These measurements are seen to match closely with those of a professional meter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an experimental procedure to determine the acoustic and vibration behavior of an inverter-fed induction motor based on measurements of the current spectrum, acoustic noise spectrum, overall noise in dB, and overall A-weighted noise in dBA. Measurements are carried out on space-vector modulated 8-hp and 3-hp induction motor drives over a range of carrier frequencies at different modulation frequencies. The experimental data help to distinguish between regions of high and low acoustic noise levels. The measurements also bring out the impact of carrier frequency on the acoustic noise. The sensitivity of the overall noise to carrier frequency is indicative of the relative dominance of the high-frequency electromagnetic noise over mechanical and aerodynamic components of noise. Based on the measured current and acoustic noise spectra, the ratio of dynamic deflection on the stator surface to the product of fundamental and harmonic current amplitudes is obtained at each operating point. The variation of this ratio of deflection to current product with carrier frequency indicates the resonant frequency clearly and also gives a measure of the amplification of vibration at frequencies close to the resonant frequency. This ratio is useful to predict the magnitude of acoustic noise corresponding to significant time-harmonic currents flowing in the stator winding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical memorandum reports on the noise measurement results performed on MBARI's Ventana ROV. The measurement procedure and the instrumentation for this experiment are also described. This report is organized as follows: Section 1 provides some introductory information. Section 2 describes the experiment and the instrumentation. Section 3 presents the results. Section 4 contains some concluding remarks. (PDF contains 16 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Gestão da Água e da Costa, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this small-scale study was to measure, analyse and compare levels of acoustic noise, in a nine-bedded general intensive care unit (ICU). Measurements were undertaken using the Norsonic 116 sound level meter recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data were obtained and recorded at 5 min over 3 consecutive days. Results of noise level analysis indicated that mean noise levels within this clinical area was 56·42 dB(A), with acute spikes reaching 80 dB(A). The quietest noise level attained was that of 50 dB(A) during sporadic intervals throughout the 24-h period. Parametric testing using analysis of variance found a positive relationship (p ≤ 0·001) between the nursing shifts and the day of the week. However, Scheffe multiple range testing showed significant differences between the morning shift, and the afternoon and night shifts combined (p ≤ 0·05). There was no statistical difference between the afternoon and night shifts (p ≥ 0·05). While the results of this study may seem self-evident in many respects, what it has highlighted is that the problem of excessive noise exposure within the ICU continues to go unabated. More concerning is that the prolonged effects of excessive noise exposure on patients and staff alike can have deleterious effect on the health and well-being of these individuals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims and objectives.  This study was undertaken to measure and analyse levels of acoustic noise in a General Surgical Ward. Method.  Measurements were undertaken using the Norsonic 116 sound level meter (SLM) recording noise levels in the internationally agreed ‘A’ weighted scale. Noise level data and observational data as to the number of staff present were obtained and recorded at 5-min intervals over three consecutive days. Results.  Results of noise level analysis indicated that mean noise level within this clinical area was 42.28 dB with acute spikes reaching 70 dB(A). The lowest noise level attained was that of 36 dB(A) during the period midnight to 7 a.m. Non-parametric testing, using Spearman's Rho (two-tailed), found a positive relationship between the number of staff present and the level of noise recorded, indicating that the presence of hospital personnel strongly influences the level of noise within this area. Relevance to clinical practice.  Whilst the results of this may seem self-evident in many respects the problems of excessive noise production and the exposure to it for patients, hospital personnel and relatives alike continues unabated. What must be of concern is the psychophysiological effects excessive noise exposure has on individuals, for example, decreased wound healing, sleep deprivation and cardiovascular stimulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A wineglass has been used as an acoustic resonator to enhance the photoacoustic signal generated by laser excitation of absorbing dyes in solution. The amplitude of the acoustic signal was recorded using a fiber-optic transducer based on a Fabry-Pérot cavity attached to the rim of the wineglass. The optical and acoustic properties of the setup were characterized, and it was used to quantify the concentration of phosphomolybdenum blue and methyl red solutions. Detection limits of 1.2 ppm and 8 muM were obtained, respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Inadvertent drilling on the ossicular chain is one of the causes of sensorineural hearing loss (HL) that may follow tympanomastoid surgery. A high-frequency HL is most frequently observed. It is speculated that the HL is a result of vibration of the ossicular chain resembling acoustic noise trauma. It is generally considered that using a large cutting burr is more likely to cause damage than a small diamond burr. Aim: The aim was to investigate the equivalent noise level and its frequency characteristics generated by drilling onto the short process of the incus in fresh human temporal bones. Methods and Materials: Five fresh cadaveric temporal bones were used. Stapes displacement was measured using laser Doppler vibrometry during short drilling episodes. Diamond. and cutting burrs of different diameters were used. The effect of the drilling on stapes footplate displacement was compared with that generated by an acoustic signal. The equivalent noise level (dB sound pressure level equivalent [SPL eq]) was thus calculated. Results: The equivalent noise levels generated ranged from 93 to 125 dB SPL eq. For a 1-mm cutting burr, the highest equivalent noise level was 108 dB SPL eq, whereas a 2.3-mm cutting burr produced a maximal level of 125 dB SPL eq. Diamond burrs generated less noise than their cutting counterparts, with a 2.3-mm diamond burr producing a highest equivalent noise level of 102, dB SPL eq. The energy of the noise increased at the higher end of the frequency spectrum, with a 2.3-mm cutting burr producing a noise level of 105 dB SPL eq at 1 kHz and 125 dB SPL eq at 8 kHz. In contrast, the same sized diamond burr produced 96 dB SPL eq at 1 kHz and 99 dB at 8 kHz. Conclusion:This study suggests that drilling on the ossicular chain can produce vibratory force that is analogous with noise levels known to produce acoustic trauma. For the same type of burr, the larger the diameter, the greater the vibratory force, and for the same size of burr, the cutting burr creates more vibratory force than the diamond burr. The cutting burr produces greater high-frequency than lower-frequency vibratory energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a new approach for speech enhancement in the presence of non-stationary and rapidly changing background noise. A distributed microphone system is used to capture the acoustic characteristics of the environment. The input of each microphone is then classified either as speech or one of the predetermined noise types. Further enhancement of speech in respective microphones is carried out using a modified spectral subtraction algorithm that incorporates multiple noise models to quickly adapt to rapid background noise changes. Tests on real world speech captured under diverse conditions demonstrate the effectiveness of this method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Shipping noise is a threat to marine wildlife. Grey seals are benthic foragers, and thus experience acoustic noise throughout the water column, which makes them a good model species for a case study of the potential impacts of shipping noise. We used ship track data from the Celtic Sea, seal track data and a coupled ocean-acoustic modelling system to assess the noise exposure of grey seals along their tracks. It was found that the animals experience step changes in sound levels up to ~20dB at a frequency of 125Hz, and ~10dB on average over 10-1000Hz when they dive through the thermocline, particularly during summer. Our results showed large seasonal differences in the noise level experienced by the seals. These results reveal the actual noise exposure by the animals and could help in marine spatial planning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Acoustically, vehicles are extremely noisy environments and as a consequence audio-only in-car voice recognition systems perform very poorly. Seeing that the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem. However, implementing such an approach requires a system being able to accurately locate and track the driver’s face and facial features in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using this system, we present our results which show that using the Viola-Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose.