964 resultados para acidification
Structure evolution characterization of Anyang anthracites via H2O2 oxidization and HF acidification
Resumo:
The structural characteristics of the raw coal (AY), the H2O2 oxidized coals (AY–H2O2) and the HF acidized AY–H2O2 (AY–H2O2–HF) were investigated by SEM, X-ray diffraction, Raman and FTIR spectroscopy. The results indicate that the derivative coals show an obvious increase in the aromaticity, crystalline carbon content and hydroxyl content, especially the AY–H2O2–HF. The stacking layer number of crystalline carbon decreases and the aspect ratio (La/Lc) remarkably increases for AY–H2O2 and AY–H2O2–HF. The crystalline layers become much thinner. The particle size of AY–H2O2–HF in width significantly decreases from 1 μm to less than 100 nm. The combination of H2O2 oxidization and HF acidification is effective to reduce the size of the aromatic layers and to increase the reactivity of derivative coals. The process can help us obtain the superfine crystalline carbon materials like graphite structure.
Resumo:
As atmospheric levels of CO2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
Resumo:
Yhteenveto: Järvien happamoituminen Suomessa: Alueellinen vedenlaatu ja kriittinen kuormitus
Resumo:
Tiivistelmä: Ilman rikkilaskeuma ja järvien happamoituminen Suomessa.
Resumo:
Intracellular pathogens such as Salmonella enterica serovar Typhimurium (S. Typhimurium) manipulate their host cells through the interplay of various virulence factors. A multitude of such virulence factors are encoded on the genome of S. Typhimurium and are usually organized in pathogenicity islands. The virulence-associated genomic stretch of STM3117-3120 has structural features of pathogenicity islands and is present exclusively in non-typhoidal serovars of Salmonella. It encodes metabolic enzymes predicted to be involved in methylglyoxal metabolism. STM3117-encoded lactoylglutathione lyase significantly impacts the proliferation of intracellular Salmonella. The deletion mutant of STM3117 (Delta lgl) fails to grow in epithelial cells but hyper-replicates in macrophages. This difference in proliferation outcome was the consequence of failure to detoxify methylglyoxal by Delta lgl, which was also reflected in the form of oxidative DNA damage and upregulation of kefB in the mutant. Within macrophages, the toxicity of methylglyoxal adducts elicits the potassium efflux channel (KefB) in the mutant which subsequently modulates the acidification of mutant-containing vacuoles (MCVs). The perturbation in the pH of the MCV milieu and bacterial cytosol enhances the Salmonella pathogenicity island 2 translocation in Delta lgl, increasing its net growth within macrophages. In epithelial cells, however, the maturation of Delta lgl-containing vacuoles were affected as these non-phagocytic cells maintain less acidic vacuoles compared to those in macrophages. Remarkably, ectopic expression of Toll-like receptors 2 and 4 on epithelial cells partially restored the survival of Delta lgl. This study identified a novel metabolic enzyme in S. Typhimurium whose activity during intracellular infection within a given host cell type differentially affected the virulence of the bacteria.
Resumo:
This study looks at the distribution and magnitude of acidification and eutrophication in south-east England where there are no natural lakes but a large number of shallow artificial ponds. The study area is defined as the region lying within a 100 km radius of central London but excluding the area within the M25 motorway. Water samples were taken from 120 sites between mid-January and the end of February 1990, with a subsequent monthly survey of a subset of 31 of these waters. Twelve chemical variables were measured in the laboratory using standard techniques. PH values for the full dataset ranged from 3.2 to 8.4, although the majority of sites had pH values in the range 7.0 to 8.5; only five sites had a pH of less than 6.0. The five low pH sites expectedly had low alkalinities and are the only sites with values below 0.1 meq per litre. Concentrations of calcium, sodium, potassium, magnesium, chloride, sulphate and nitrate had normal distributions. The majority of sites had total phosphorus concentrations in the range 25 to 200 mu g per litre, although 10 sites had concentrations above 400 mu g per litre. The low number of acid sites suggests that surface water acidity is not a widespread regional problem in south-east England. However the survey shows that a large number of standing waters in the region have high total phosphorus and nitrate concentrations, and 89% may be considered moderately to considerably eutrophic.
Resumo:
Studies by the Freshwater Biological Association over the last 25 years have supplied data relevant to the levels of acidity in local soils and water before the onset of industrial pollution and current interest in acid rain. This article reviews published analysis from cores of lake sediments, in or near the catchment of the River Duddon. Electron spin resonance spectra of humic acids and iodine values confirm evidence from pollen analysis for a history of progressive acidification of the source material of lake sediments since before 5000 radiocarbon years, in upland catchments of the Lake District. Processes involved included: removal of basic ions from soils by rainfall, the effects of which were intensified by removal by man of deciduous forest; acidification of soils and waters by decomposition products of Calluna and further acidification of waters by Sphagnum species which colonized habitats where drainage became impeded by paludification processes.