985 resultados para acid etching
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective: the purpose of the present study was to investigate the effects of ND:YLF laser irradiation (1.31 J/cm(2); 250 mJ per pulse), acid etching, and hypermineralization on the shear bond strength (SBS) of the Scotchbond Multi-Purpose Plus (3M Dental Products) bonding system. Summary Background Data: Previous studies had shown that the pretreatment of the dentin substrate with laser irradiation can influence the SBS, Methods: Sixty bovine incisors were selected and stored at -18 degrees C, Dentinal buccal surface was exposed and radiographs were taken to control dentin thickness, the specimens were separated into 2 groups: (1) the control, which was kept in distilled water at 4 degrees C; (2) the hypermineralized, which was kept in hypermineralizing solution at 4 degrees C for 14 days, Each group was divided into 3 subgroups according to the type of dentin pretreatment used: M (acid etching + primer + bond); AL (acid etching + primer + bond + laser); and LA (laser + acid etching + primer + bond). A standard composite resin cylinder (Z100-3M) was bonded to the dentinal surface and the SBS performed on an Instron machine (500 Kg load cell at 0.5 mm/min), followed by scanning electron microscopy (SEM) and x-ray diffraction analysis. Results: Analysis of variance (ANOVA) determined that the pretreatments influenced the SBS values (p < 0.05): AL (9.96 MPa), M (7.28 MPa), and LA (4.87 MPa), the interaction between the group and pretreatment factors also influenced the SBS (p < 0.05). The highest values were obtained for the interaction control/AL (11.64 MPa), Conclusion: the results suggested that dentin treatment with laser after the application of the adhesive system is efficient in achieving higher bond strength and is promising as a possible new adhesive substrate.
Resumo:
This study aimed to compare the microtensile bond strength of resin cement to alumina-reinforced feldspathic ceramic submitted to acid etching or chairside tribochemical silica coating. Ten blocks of Vitadur-α were randomly divided into 2 groups according to conditioning method: (1) etching with 9.6% hydrofluoric acid or (2) chairside tribochemical silica coating. Each ceramic block was luted to the corresponding resin composite block with the resin cement (Panavia F). Next, bar specimens were produced for microtensile testing. No significant difference was observed between the 2 experimental groups (Student t test, P> .05). Both surface treatments showed similar microtensile bond strength values.
Resumo:
PURPOSE: To investigate the penetration (tags) of adhesive materials into enamel etched with phosphoric acid or treated with a self-etching adhesive, before application of a pit-and-fissure sealant. MATERIALS AND METHODS: The sample comprised six study groups with six specimens each. Before pit-and-fissure sealing with the materials Clinpro SealantTM (Groups I and II), Vitro Seal ALPHA (Groups III and IV) and Fuji II LC (Groups V and VI), the teeth in Groups I, III, and V were etched with 35% phosphoric acid for 30 seconds. Teeth in Groups II, IV, and VI received application of the self-etching adhesive Adper Prompt L-Pop. The treated teeth were sectioned buccolingually, ground to 100-microm thickness, decalcified, and analyzed by conventional light microscopy at 400x magnification. RESULTS: The teeth etched with phosphoric acid exhibited significantly greater penetration than specimens treated with self-etching adhesive. CLINICAL SIGNIFICANCE: When compared with enamel treated with a self-etching adhesive, the penetration (tags) of adhesive materials into enamel was greater when applied on enamel etched with phosphoric acid.
Resumo:
The aim of this study was to examine the effect of different acid etching times on the surface roughness and flexural strength of a lithium disilicate-based glass ceramic. Ceramic bar-shaped specimens (16 mm x 2 mm x 2 mm) were produced from ceramic blocks. All specimens were polished and sonically cleaned in distilled water. Specimens were randomly divided into 5 groups (n=15). Group A (control) no treatment. Groups B-E were etched with 4.9% hydrofluoric acid (HF) for 4 different etching periods: 20 s, 60 s, 90 s and 180 s, respectively. Etched surfaces were observed under scanning electron microscopy. Surface profilometry was used to examine the roughness of the etched ceramic surfaces, and the specimens were loaded to failure using a 3-point bending test to determine the flexural strength. Data were analyzed using one-way ANOVA and Tukey's test (α=0.05). All etching periods produced significantly rougher surfaces than the control group (p<0.05). Roughness values increased with the increase of the etching time. The mean flexural strength values were (MPa): A=417 ± 55; B=367 ± 68; C=363 ± 84; D=329 ± 70; and E=314 ± 62. HF etching significantly reduced the mean flexural strength as the etching time increased (p=0.003). In conclusion, the findings of this study showed that the increase of HF etching time affected the surface roughness and the flexural strength of a lithium disilicate-based glass ceramic, confirming the study hypothesis.
Resumo:
The objective of this study was to evaluate the influence of different primers on the microtensile bond strength (μT BS) between a feldspathic ceramic and two composites. Forty blocks (6.0 × 6.0 × 5.0 mm 3) were prepared from Vita Mark II . After polishing, they were randomly divided into 10 groups according to the surface treatment: Group 1, hydrofluoric acid 10% (HF) + silane; Group 2, CoJet + silane; Group 3, HF + Metal/Zirconia Primer; Group 4, HF + Clearfil Primer; Group 5, HF + Alloy Primer; Group 6, HF + V-Primer; Group 7, Metal/Zirconia Primer; Group 8, Clearfil Primer; Group 9, Alloy Primer; Group 10, V-Primer. After each surface treatment, an adhesive was applied and one of two composite resins was incrementally built up. The sticks obtained from each block (bonded area: 1.0 mm2 ± 0.2 mm) were stored in distilled water at 37°C for 30 days and submitted to thermocycling (7,000 cycles; 5°C/55°C ± 1°C). The μT BS test was carried out using a universal testing machine (1.0 mm/min). Data were analyzed using ANOVA and a Tukey test (α = 0.05). The surface treatments significantly affected the results (P < 0.05); no difference was observed between the composites (P > 0.05). The bond strength means (MPa) were as follows: Group 1a = 29.6; Group 1b = 33.7; Group 2a = 28.9; Group 2b = 27.1; Group 3a = 13.8; Group 3b = 14.9; Group 4a = 18.6; Group 4b = 19.4; Group 5a = 15.3; Group 5b = 16.5; Group 6a = 11; Group 6b = 18; Groups 7a to 10b = 0. While the use of primers alone was not sufficient for adequate bond strengths to feldspathic ceramic, HF etching followed by any silane delivered higher bond strength.
Resumo:
Objectives: To evaluate the null hypotheses that hydrofluoric (HF) acid etching time would neither decrease the biaxial flexural strength of a glass-based veneering ceramic nor enhance it after silane and unfilled resin (UR) applications. Methods: Disc-shaped IPS e.max ZirPress specimens were allocated into 12 groups: G1-control (no-etching), G2-30 s, G3-60 s, G4-90 s, G5-120 s, G6-60 s + 60 s. Groups (G7-G12) were treated in the same fashion as G1-G6, but followed by silane and UR applications. Surface morphology and roughness (Ra and Rq) of the ceramics were assessed by means of scanning electron microscopy (SEM) and profilometry, respectively. Flexural strength was determined by biaxial testing. Data were analyzed by two-way ANOVA and the Sidak test (α = 0.05). Weibull statistics were estimated and finite element analysis (FEA) was carried out to verify the stress concentration end areas of fracture. Results: The interaction (etching time vs. surface treatment) was significant for Ra (p = 0.008) and Rq (0.0075). Resin-treated groups presented significantly lower Ra and Rq than non-treated groups, except for the 60 s group (p < 0.005). SEM revealed that etching affected the ceramic microstructure and that the UR was able to penetrate into the irregularities. A significant effect of etching time (p = 0.029) on flexural strength was seen. G7-G12 presented higher strength than G1-G6 (p < 0.0001). None of experimental groups failed to show 95% confidence intervals of σ 0 and m overlapped. FEA showed lower stress concentration after resin treatment. Significance: HF acid etching time did not show a damaging effect on the ceramic flexural strength. Moreover, the flexural strength could be enhanced after UR treatment. © 2013 Academy of Dental Materials.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study evaluated the effect on micro-tensile bond strength (mu-TBS) of laser irradiation of etched/unetched dentin through an uncured self-etching adhesive. Dentinal surfaces were treated with Clearfil SE Bond Adhesive (CSE) either according to the manufacturer's instructions (CSE) or without applying the primer (CSE/NP). The dentin was irradiated through the uncured adhesive, using an Nd: YAG laser at 0.75 or 1 W power settings. The adhesive was cured, composite crowns were built up, and the teeth were sectioned into beams (0.49 mm(2)) to be stressed under tension. Data were analyzed using one-way ANOVA and Tukey statistics (alpha = 5%). Dentin of the fractured specimens and the interfaces of untested beams were observed under scanning electron microscopy (SEM). The results showed that non-etched irradiated surfaces presented higher mu-TBS than etched and irradiated surfaces (p < 0.05). Laser irradiation alone did not lead to differences in mu-TBS (p > 0.05). SEM showed solidification globules on the surfaces of the specimens. The interfaces were similar on irradiated and non-irradiated surfaces. Laser irradiation of dentin through the uncured adhesive did not lead to higher mu-TBS when compared to the suggested manufacturer's technique. However, this treatment brought benefits when performed on unetched dentin, since bond strengths were higher when compared to etched dentin.