982 resultados para accelerator magnet


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The traditional design of accelerator magnet usually involves many time consuming iterations of the manual analysis process. A software platform to do these iterations automatically is proposed in this paper. In this platform, we use DAKOTA (a open source software developed by Sandia National Laboratories) as the optimizing routine, which provides a variety of optimization methods and algorithms, and OPERA (software from Vector Fields) is selected as the electromagnetic simulating routine. In this paper, two examples of designs of accelerator magnets are used to illustrate how an optimization algorithm is chosen and the platform works.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High Temperature superconductors are able to carry very high current densities, and thereby sustain very high magnetic fields. There are many projects which use the first property and these have concentrated on power generation, transmission and utilization, however there are relatively few which are currently exploiting the ability to sustain high magnetic fields. There are two main reasons for this: high field wound magnets can and have been made from both BSCCO and YBCO but currently their cost is much higher than the alternative provided by low Tc materials such as Nb3Sn and NbTi. An alternative form of the material is the bulk form which can be magnetized to high fields and using flux pumping this can be done in situ. This paper explores some of the applications of bulk superconductors and describes methods of producing field patterns using the highly uniform magnetic fields required for MRI and accelerator magnets as the frame of reference. The patterns are not limited to uniform fields and it is entirely possible to produce a field varying sinusoidally in space such as would be required for a motor or a generator. The scheme described in this paper describes a dipole magnet such as is found in an accelerator magnet. The tunnel is 30 × 50 × 1000 mm and we achieve a uniformity of better than 200 ppm over the 1000 mm length and better than 1 ppm over the central 500 mm region. The paper presents results for both the overall uniformity and the integrated uniformity which is 302 ppm over the 1000 mm length. © 2010 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cooler Storage Ring (CSR) of Heavy Ion Research Facility in Lanzhou (HIRFL) consists of a main ring (CSRm) and an experimental ring (CSRe). Two particular C-type dipoles with embedded windings are used in the injection beam line of CSRm. They also act as the prototype dipoles of CSRe. The windings are designed to improve the field quality by their trimming current. The current impacts on field homogeneity and multipole components are investigated by a hall sensor and a long coil, respectively. The experiment shows that a field homogeneity of +/- 1.0 x 10(-3) can be reached by adjusting the trimming currents, though the multipole components change correspondingly. In our case, the quadrupole component is decreased to a low level with the octupole, decapole and 12-pole ones increased slightly when the trimming current is optimized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CSR控制系统是一个基于网络的分布式控制系统,它是由许多分控制系统组成。磁场电源控制系统是CSR控制系统中很重要的一部分,它是一个波形发生、数据采集系统。所有依赖波形控制的系统都可以由它来控制。波形的参数由物理学家根据实验需要计算得出。因为加速器所有的运行状态都被电源所控制,所以控制系统的直接控制对象就是磁场电源。在整个控制系统中最重要的就是控制波形的同步和波形的精度,这是同步加速器控制系统的关键所在。波形的同步由同步时序系统控制,这是CSR成功运行的决定条件。数据的采集、电源状态的监测由数据采集模块CPLD负责完成,与前端ARM控制器结合,形成数据的上行通道。采集到的数据均存放在中央控制室的数据库中,以供参考、后期分析及应用。论文论述了对CSR磁场电源控制系统、时序系统和软件系统的设计实现及优化改进

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 320 kV high voltage (HV) platform has been constructed at Institute of Modern Physics (IMP) to satisfy the increasing requirements of experimental studies in some heavy ion associated directions. A high charge state all-permanent magnet ECRIS-LAPECR2 has been designed and fabricated to provide intense multiple charge state ion beams (such as 1000 e mu A O6+, 16.7 e mu A Ar14+, 24 e mu A Xe27+, etc.) for the HV platform. LAPECR2 has a dimension of 0 650 mm x 560 mm. The powerful 3D magnetic confinement to the ECR plasma and the optimum designed magnetic field for the operation at 14.5 GHz makes it possible to obtain very good performances from this source. After a brief introduction of the ECRIS and accelerator development at IMP, the conceptual design of LAPECR2 source is presented. The first test results of this all-permanent magnet ECRIS are given in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We will present measurements and calculations related to the antisymmetric perturbations, and comparisons with the symmetric ones, of the IFUSP race-track microtron booster accelerator end magnets. These perturbations were measured in planes situated at +/-12 mm of the middle plane, in a gap height of 4 cm, for a field distribution of about 0.1 T. The measurements were done in 1170 points, separated by a distance of 8 mm, using an automated system with a +/-1.5 mu T differential Hall probe. The race-track microtron booster is the second stage of the 30.0 MeV electron accelerator under construction at the Linear Accelerator Laboratory in which the required uniformity for the magnetic field is of about 10(-3). The method of correction employed to homogenize the IFUSP race-track microtron booster accelerator magnets assures uniformity of 10(-5) in an average field of 0.1 T, over an area of 700 cm(2). This method uses the principle of attaching to the pole pieces correction coils produced by etching techniques, with copper leads shaped like the isofield lines of the normal component of the magnetic field measured. The ideal planes, in which these measurements are done, are calculated and depend on the behavior of the magnetic field perturbations: symmetric or antisymmetric with reference to the middle plane of the magnet gap. These calculations are presented in this work and show that for antisymmetric perturbations there is no ideal plane for the correction of the magnetic field; for the symmetric one, these planes are at +/-60% of the half gap height, from the middle plane. So this method of correction is not feasible for antisymmetric perturbations, as will be shown. Besides, the correction of the symmetric portion of the field distribution does not influence the antisymmetric one, which almost does not change, and corroborates the theoretical predictions. We found antisymmetric perturbations of small intensity only in one of the two end magnets. However, they are not detected at +/- 1 mm of the middle plane and will not damage the electron beam.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"AEC Contract AT930-1)-2137."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"AEC Contract AT(04-3)-400."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"AEC Contract AT(04-3)-400."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"AEC Contract AT(04-3)-400."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crossing the Franco-Swiss border, the Large Hadron Collider (LHC), designed to collide 7 TeV proton beams, is the world's largest and most powerful particle accelerator the operation of which was originally intended to commence in 2008. Unfortunately, due to an interconnect discontinuity in one of the main dipole circuit's 13 kA superconducting busbars, a catastrophic quench event occurred during initial magnet training, causing significant physical system damage. Furthermore, investigation into the cause found that such discontinuities were not only present in the circuit in question, but throughout the entire LHC. This prevented further magnet training and ultimately resulted in the maximum sustainable beam energy being limited to approximately half that of the design nominal, 3.5-4 TeV, for the first three years of operation (Run 1, 2009-2012) and a major consolidation campaign being scheduled for the first long shutdown (LS 1, 2012-2014). Throughout Run 1, a series of studies attempted to predict the amount of post-installation training quenches still required to qualify each circuit to nominal-energy current levels. With predictions in excess of 80 quenches (each having a recovery time of 8-12+ hours) just to achieve 6.5 TeV and close to 1000 quenches for 7 TeV, it was decided that for Run 2, all systems be at least qualified for 6.5 TeV operation. However, even with all interconnect discontinuities scheduled to be repaired during LS 1, numerous other concerns regarding circuit stability arose. In particular, observations of an erratic behaviour of magnet bypass diodes and the degradation of other potentially weak busbar sections, as well as observations of seemingly random millisecond spikes in beam losses, known as unidentified falling object (UFO) events, which, if persist at 6.5 TeV, may eventually deposit sufficient energy to quench adjacent magnets. In light of the above, the thesis hypothesis states that, even with the observed issues, the LHC main dipole circuits can safely support and sustain near-nominal proton beam energies of at least 6.5 TeV. Research into minimising the risk of magnet training led to the development and implementation of a new qualification method, capable of providing conclusive evidence that all aspects of all circuits, other than the magnets and their internal joints, can safely withstand a quench event at near-nominal current levels, allowing for magnet training to be carried out both systematically and without risk. This method has become known as the Copper Stabiliser Continuity Measurement (CSCM). Results were a success, with all circuits eventually being subject to a full current decay from 6.5 TeV equivalent current levels, with no measurable damage occurring. Research into UFO events led to the development of a numerical model capable of simulating typical UFO events, reproducing entire Run 1 measured event data sets and extrapolating to 6.5 TeV, predicting the likelihood of UFO-induced magnet quenches. Results provided interesting insights into the involved phenomena as well as confirming the possibility of UFO-induced magnet quenches. The model was also capable of predicting that such events, if left unaccounted for, are likely to be commonplace or not, resulting in significant long-term issues for 6.5+ TeV operation. Addressing the thesis hypothesis, the following written works detail the development and results of all CSCM qualification tests and subsequent magnet training as well as the development and simulation results of both 4 TeV and 6.5 TeV UFO event modelling. The thesis concludes, post-LS 1, with the LHC successfully sustaining 6.5 TeV proton beams, but with UFO events, as predicted, resulting in otherwise uninitiated magnet quenches and being at the forefront of system availability issues.